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Abstract

In this paper, Spectral Bridges, a novel clustering algorithm, is introduced. This algorithm
builds upon the traditional k-means and spectral clustering frameworks by subdividing data
into small Voronoï regions, which are subsequently merged according to a connectivity measure.
Drawing inspiration from Support Vector Machine’s margin concept, a non-parametric clustering
approach is proposed, building an affinity margin between each pair of Voronoï regions. This
approach delineates intricate, non-convex cluster structures and is robust to hyperparameter
choice.

The numerical experiments underscore Spectral Bridges as a fast, robust, and versatile tool
for clustering tasks spanning diverse domains. Its efficacy extends to large-scale scenarios
encompassing both real-world and synthetic datasets.

The Spectral Bridge algorithm is implemented both in Python (https://pypi.org/project/
spectral-bridges) and R https://github.com/cambroise/spectral-bridges-Rpackage).
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1 Introduction27

Clustering is a fundamental technique for exploratory data analysis, organizing a set of objects into28

distinct homogeneous groups known as clusters. It is extensively utilized across various fields, such29

as biology for gene expression analysis (Eisen et al. 1998), social sciences for community detection in30

social networks (Latouche, Birmelé, and Ambroise 2011), and psychology for identifying behavioral31

patterns. Clustering is often employed alongside supervised learning as a pre-processing step, helping32

to structure and simplify data, thus enhancing the performance and interpretability of subsequent33

predictive models (Verhaak et al. 2010). Additionally, clustering can be integrated into supervised34

learning algorithms, such as mixture of experts (Jacobs et al. 1991), as part of a multi-objective35

strategy.36

There are various approaches to clustering, and the quality of the results is largely determined by37

how the similarity between objects is defined, either through a similarity measure or a distance38

metric. Clustering techniques originate from diverse fields of research, such as genetics, psychometry,39

statistics, and computer science. Some methods are entirely heuristic, while others aim to optimize40

specific criteria and can be related to statistical models.41

Density-based methods identify regions within the data with a high concentration of points, corre-42

sponding to the modes of the joint density. A notable non-parametric example of this approach is43

DBSCAN (Ester et al. 1996). In contrast, model-based clustering, such as Gaussian mixture models,44

represents a parametric approach to density-based methods. Model-based clustering assumes that45

the data is generated from a mixture of underlying probability distributions, typically Gaussian46

distributions. Each cluster is viewed as a component of this mixture model, and the Expectation-47

Maximization (EM) algorithm is often used to estimate the parameters. This approach provides a48

probabilistic framework for clustering, allowing for the incorporation of prior knowledge and the49

ability to handle more complex cluster shapes and distributions (McLachlan and Peel 2000).50
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Geometric approaches, such as k-means (MacQueen et al. 1967), are distance-based methods that aim51

to partition data by optimizing a criterion reflecting group homogeneity. The k-means++ algorithm52

(Arthur and Vassilvitskii 2006) enhances this approach by providing faster and more reliable results.53

However, a key limitation of these methods is the assumption of linear boundaries between clusters,54

implying that clusters are convex. To address non-convex clusters, the kernel trick can be applied,55

allowing for a more flexible k-means algorithm. This approach is comparable to spectral clustering in56

handling complex cluster boundaries (Dhillon, Guan, and Kulis 2004). The k-means algorithm can also57

be interpreted within the framework of model-based clustering under specific assumptions (Govaert58

and Nadif 2003), revealing that it is essentially a special case of the more general Gaussian mixture59

models, where clusters are assumed to be spherical Gaussian distributions with equal variance.60

Graph-based methods represent data as a graph, with vertices symbolizing data points and edges61

weighted to indicate the affinity between these points. Spectral clustering can be seen as a relaxed62

version of the graph cut algorithm (Shi and Malik 2000). However, traditional spectral clustering faces63

significant limitations due to its high time and space complexity, greatly hindering its applicability64

to large-scale problems (Von Luxburg 2007).65

The method we propose aims to find non-convex clusters in large datasets, without relying on a66

parametric model, by using spectral clustering based on an affinity that characterizes the local density67

of the data. The algorithm described in this paper draws from numerous clustering approaches. The68

initial intuition is to detect high-density areas. To this end, vector quantization is used to divide the69

space into a Voronoï tessellation. An original geometric criterion is then employed to detect pairs70

of Voronoï regions that are either distant from each other or separated by a low-density boundary.71

Finally, this affinity measure is considered as the weight of an edge in a complete graph connecting72

the centroids of the tessellation, and a spectral clustering algorithm is used to find a partition of this73

graph. The two main parameters of the algorithm are the number of Voronoï Cells and the number74

of clusters.75

The paper begins with a section dedicated to presenting the context and related algorithms, followed76

by a detailed description of the proposed algorithm. Experiments and comparisons with reference77

algorithms are then conducted on both real and synthetic data.78

2 Related Work79

Spectral clustering is a graph-based approach that computes the eigen-vectors of the graph’s Laplacian80

matrix. This technique transforms the data into a lower-dimensional space, making the clusters81

more discernible. A standard algorithm like k-means is then applied to these transformed features82

to identify the clusters (Von Luxburg 2007). Spectral clustering enables capturing complex data83

structures and discerning clusters based on the connectivity of data points in a transformed space,84

effectively treating it as a relaxed graph cut problem.85

Classical spectral clustering involves two phases: construction of the affinity matrix and eigen-86

decomposition. Constructing the affinity matrix requires 𝑂(𝑛2𝑑) time and 𝑂(𝑛2) memory, while87

eigen-decomposition demands 𝑂(𝑛3) time and 𝑂(𝑛2) memory, where 𝑛 is the data size and 𝑑 is the88

dimension. As 𝑛 increases, the computational load escalates significantly (Von Luxburg 2007).89

To mitigate this computational burden, one common approach is to sparsify the affinity matrix and90

use sparse eigen-solvers, reducing memory costs but still requiring computation of all original matrix91

entries (Von Luxburg 2007). Another strategy is sub-matrix construction. The Nyström method92

randomly selects 𝑚 representatives from the dataset to form an 𝑛 × 𝑚 affinity sub-matrix (Chen et93

al. 2010). Cai et al. extended this with the landmark-based spectral clustering method, which uses94

k-means to determine𝑚 cluster centers as representatives (Cai and Chen 2014). Ultra-scalable spectral95
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clustering (U-SPEC) employs a hybrid representative selection strategy and a fast approximation96

method for constructing a sparse affinity sub-matrix (Huang et al. 2019).97

Other approaches use the properties of the small initial clusters for the affinity computation. Cluster-98

ing Based on Graph of Intensity Topology (GIT) estimates for example a global topological graph99

(topo-graph) between local clusters (Gao et al. 2021). It then uses the Wasserstein Distance between100

predicted and prior class proportions to automatically cut noisy edges in the topo-graph and merge101

connected local clusters into final clusters.102

The issue of characterizing the affinity between two clusters to create an edge weight is central to103

the efficiency of a spectral clustering algorithm operating from a submatrix.104

Notice that the clustering robustness of many Spectral clustering algorithms heavily relies on the105

proper selection of kernel parameter, which is difficult to find without prior knowledge (Ng, Jordan,106

and Weiss 2001).107

3 Spectral Bridges108

The proposed algorithm uses k-means centroids for vector quantization defining Voronoï region, and109

a strategy is proposed to link these regions, with an “affinity” gauged in terms of minimal margin110

between pairs of classes. These affinities are considered as weight of edges defining a completely111

connected graph whose vertices are the regions. Spectral clustering on the region provide a partition112

of the input space. The sole parameters of the algorithm are the number of Voronoï region and the113

number of final cluster.114

3.1 Bridge affinity115

The basic idea involves calculating the difference in inertia achieved by projecting onto a segment116

connecting two centroids, rather than using the two centroids separately (see Figure 1). If the117

difference is small, it suggests a low density between the classes. Conversely, if this difference is118

large, it indicates that the two classes may reside within the same densely populated region.119

Figure 1: Balls (left) versus Bridge (right). The inertia of each structure is the sum of the squared
distances represented by grey lines.
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Let us consider a sample 𝑋 = (𝑥𝑖)𝑖∈{1,⋯,𝑛} of vectors 𝑥𝑖 ∈ ℝ𝑑 and a set of 𝑚 coding vectors (𝜇𝑘)𝑘∈{1,⋯,𝑚}120

defining a partition 𝑃 = {𝒱1, ⋯ , 𝒱𝑚} of ℝ𝑑 into 𝑚 Voronoï regions:121

𝒱𝑘 = {x ∈ ℝ𝑑 ∣ ‖x − 𝜇𝑘‖ ≤ ‖x − 𝜇𝑗‖ for all 𝑗 ≠ 𝑘} .

In the following a ball denotes the subset of 𝑋 in a Voronoï region. The inertia of two balls 𝒱𝑘 and122

𝒱𝑙 is123

𝐼𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘

‖𝑥𝑖 − 𝜇𝑘‖
2 + ∑

𝑥𝑖∈𝒱𝑙

‖𝑥𝑖 − 𝜇𝑙‖
2.

We define a bridge as a structure defined by a segment connecting two centroids 𝜇𝑘 and 𝜇𝑙. The124

inertia of a bridge between 𝒱𝑘 and 𝒱𝑙 is defined as125

𝐵𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘∪𝒱𝑙

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2,

where126

𝑝𝑘𝑙(𝑥𝑖) = 𝜇𝑘 + 𝑡𝑖(𝜇𝑙 − 𝜇𝑘),

with127

𝑡𝑖 = min (1,max (0,
⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩

‖𝜇𝑙 − 𝜇𝑘‖2
)) .

Considering two centroïds, the normalized average of the difference betweenn Bridge and balls128

inertia (see Appendix) constitutes the basis of our affinity measure between two regions:129

𝐵𝑘𝑙 − 𝐼𝑘𝑙
(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2

=
∑𝑥𝑖∈𝒱𝑘

⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩
2
+ +∑𝑥𝑖∈𝒱𝑙

⟨𝑥𝑖 − 𝜇𝑙|𝜇𝑘 − 𝜇𝑙⟩
2
+

(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖4
,

=
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼2𝑖
𝑛𝑘 + 𝑛𝑙

,

where130

𝛼𝑖 = {
𝑡𝑖, if 𝑡𝑖 ∈ [0, 1/2],
1 − 𝑡𝑖, if 𝑡𝑖 ∈]1/2, 1].

The basic intuition behind this affinity is that 𝑡𝑖 represents the relative position of the projection of 𝑥𝑖131

on the segment [𝜇𝑘, 𝜇𝑙]. 𝛼𝑖 represents the relative position on the segment, with the centroid of the132

class to which 𝑥𝑖 belongs as the reference point.133

This quantity can also be understood in relation to a local form of PCA. Unlike the standard PCA134

inertia criterion, this approach is directional and limited to the union of two Voronoï cells.135

Let 𝑋|𝑘 denote the data matrix restricted to the region 𝒱𝑘. The projection operator onto the 𝜇𝑘-136

centered segment [0, 𝜇𝑙 − 𝜇𝑘] is given by:137

𝜋𝑘𝑙(⋅) = 𝑝𝑘𝑙(⋅) − 𝜇𝑘

It then follows that:138

∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙
𝛼2𝑖

𝑛𝑘 + 𝑛𝑙
=

‖𝜋𝑘𝑙(𝑋|𝑘)‖2𝐹 + ‖𝜋𝑙𝑘(𝑋|𝑙)‖2𝐹
(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2

where ‖ ⋅ ‖𝐹 is the Frobenius norm.139

This formulation is particularly useful for numerical implementation.140
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Moreover, the boundary that separates the two clusters defined by centroids 𝜇𝑘 and 𝜇𝑙 is a hyperplane141

𝒫𝑘𝑙. This hyperplane is orthogonal to the line segment connecting the centroids and intersects this142

segment at its midpoint.143

If we consider all points 𝑥𝑖 ∈ 𝒱𝑘 ∪ 𝒱𝑙 which are not projected on centroids but somewhere on the144

segment, the distance from a point to the hyperplane is145

𝑑(𝑥𝑖, 𝒫𝑘𝑙) = (1/2 − 𝛼𝑖)‖𝜇𝑘 − 𝜇𝑙‖.

This distance is similar to the concept of margin in Support Vector Machine (Cortes and Vapnik 1995).146

When the 𝛼𝑖 values are small (close to zero since 𝛼𝑖 ∈ [0, 1/2]), the margins to the hyperplane are147

large, indicating a low density between the classes. Conversely, if the margins are small, it suggests148

that the two classes may reside within the same densely populated region. Consequently, the sum of149

the 𝛼𝑖 or 𝛼2𝑖 increases with the density of the region between the classes (See Figure Figure 2).150

(a) Margin with close centroids
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(b) Density of the 𝛼𝑖 for close centroids

(c) Margin with well separated centroids
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(d) Density of the 𝛼𝑖 for well separated centroids

Figure 2: Spectral Bridge affinity illustration involving two centroids. The bold black dots mark
the centroids of each cluster, while the colored cells represent the final partition of data points. In
subfigures (a) and (c), the length of each dotted grey segment is proportional to 1/2 − 𝛼𝑖, whereas
the thin black segments are proportional to 𝛼𝑖. Subfigures (b) and (d) depict the distribution of 𝛼𝑖,
showing the behavior when clusters are either closely positioned (a, b) or well-separated (c, d).
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Note that the criterion is local and indicates the relative difference in densities between the balls and151

the bridge, rather than evaluating a global score for the densities of the structures.152

Eventually, we define the bridge affinity between centroids 𝑘 and 𝑙 as the square root of the variance153

gain:154

𝑎𝑘𝑙 = {
0, if 𝑘 = 𝑙,

√
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼2𝑖
𝑛𝑘+𝑛𝑙

, otherwise.

The inclusion of the square root redefines the variance affinity measure. Rather than using the155

squared Euclidean norm, the affinity is interpreted as a quadratic mean, representing the ratio of the156

standard deviation to the length of the segment connecting two centroids.157

This concept can be generalized by introducing the 𝑝-bridge affinity for any 𝑝 > 0 using the158

Minkowski mean:159

𝑎𝑝,𝑘𝑙 =
⎧

⎨
⎩

0, if 𝑘 = 𝑙,

(
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼𝑝𝑖
𝑛𝑘+𝑛𝑙

)
1/𝑝

, otherwise.

Both definitions are equivalent when 𝑝 = 2. For 𝑝 = 1, the affinity aligns directly with the SVM160

model previously discussed. Note that this yields a bounded metric in [0, 1/2].161

To allow points with large margin to dominate and make the algorithm more robust to noise and162

outliers we consider the following exponential transformation:163

𝑎̃𝑘𝑙 = 𝑔(𝑎𝑘𝑙) = exp(𝛾𝑎𝑘𝑙). (1)

where 𝛾 is a scaling factor. This factor is set to ensure a large enough separation between the final164

coefficients. This factor is determined by the equation:165

𝛾 =
𝑙𝑜𝑔(𝑀)
𝑞90 − 𝑞10

where 𝑞10 and 𝑞90 are respectively the 10th and 90th percentiles of the original affinity matrix166

and 𝑀 > 1. Thus, since the transformation is order-preserving, the 90th percentile of the newly167

constructed matrix is 𝑀 times greater than the 10th percentile. By default, 𝑀 is arbitrarily set to a168

large value of 104.169

This regularization is crucial: with a bounded affinity metric, exponentiation enhances the separation170

between low and high-density regions, controlled by a scaling parameter, as in traditional spectral171

clustering. Redefining the metric with a square root (or power 1/𝑝 for the generalized affinity) helps172

mitigate a converse issue. Omitting this step would entail 𝑎𝑝,𝑘𝑙 ≤ 2−𝑝. Machine error could cause173

numerical instability when solving the Laplacian eigenproblem, especially if values become too small174

or too large, since the range of affinity values can become wide when the initial ratio between the175

largest and smallest non-zero unscaled bridge affinities is high. This transformation reduces the176

maximum values in the affinity matrix while preserving the metric’s interpretability and distance-like177

properties; importantly, this adjustment is not intended for outlier detection.178

3.2 Algorithm179

The Spectral Bridges algorithm first identifies local clusters to define Voronoï regions, computes180

edges with affinity weights between these regions, and ultimately cuts edges between regions with181

low inter-region density to determine the final clusters (see Algorithm 1 and Figure 3).182

7



su
bm
itte
d

In spectral clustering, the time complexity is usually dominated by the eigen-decomposition step,183

which is 𝑂(𝑛3). However, in the case of Spectral Bridges, the k-means algorithm has a time complexity184

of 𝑂(𝑛 ×𝑚 × 𝑑). For datasets with large 𝑛, this can be more significant than the 𝑂(𝑚3) time complexity185

of the Spectral Bridges eigen-decomposition. As for the affinity matrix construction, there are 𝑚2
186

coefficients to be calculated. Each 𝑎𝑘𝑙 coefficient requires the computation of 𝑛𝑘 + 𝑛𝑙 dot products as187

well as the norm ‖𝜇𝑘 − 𝜇𝑙‖, the latter often being negligeable. Assuming that the Voronoï regions are188

roughly balanced in cardinality, we have 𝑛𝑘 ≈
𝑛
𝑚 . Since 𝑚 should always be less than 𝑛, therefore189

𝑛
𝑚 > 1 and the time complexity of the affinity matrix is 𝑂( 𝑛𝑚 × 𝑚2 × 𝑑) = 𝑂(𝑛 × 𝑚 × 𝑑) given the190

acceptable range of values for 𝑚. Nonetheless, this is rarely the bottleneck.191

Algorithm 1 Spectral Bridges
1: procedure SpectralBridges(𝑋, 𝑘, 𝑚) ▷ 𝑋: input dataset, 𝑘: number of clusters, 𝑚: number of

Voronoï regions
2: Step 1: Vector Quantization
3: centroids, voronoiRegions ← KMeans(𝑋,𝑚) ▷ Initial centroids and Voronoi regions using

k-means++
4: Step 2: Affinity Computation
5: 𝐴 = {𝑔(𝑎𝑘𝑙)}𝑘𝑙 ← Affinity(𝑋, centroids, voronoiRegions) ▷ Compute affinity matrix 𝐴
6: Step 3: Spectral Clustering ▷ Assign each region to a cluster
7: labels ← SpectralClustering(𝐴, 𝑘)
8: Step 4: Propagate ▷ Assign each data point to the cluster of its region
9: clusters ← Propagate(𝑋, labels, voronoiRegions)
10: return clusters ▷ Return cluster labels for data points in 𝑋
11: end procedure

(a) Vector quantization (b) Affinity computation (c) Spectral clustering

Figure 3: Illustration of the Spectral Bridges algorithm with the Iris dataset (first principal plane).
The bold red dots represent the centroids of the clusters, while the colored cells indicate the final
partition of the data points. Vector quantization (Step 1 of Algorithm 1 ), Affinity computation (Step
2 of Algorithm 1 ), Spectral clustering and spreading (Step 3-4 of Algorithm 1 ).

3.3 Hyperparameter settings192

The proposed algorithm requires three input parameters: the number of clusters 𝐾, the number of193

Voronoï regions 𝑚, and a scaling parameter for the spectral clustering phase.194

Model selection in non-parametric settings is challenging due to the absence of predefined model195

parameters. It relies heavily on data-driven approaches. Metrics like the Gap Statistic (Tibshirani,196
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Walther, and Hastie 2001) and the Laplacian eigengap (Von Luxburg 2007) are potential tools for197

hyperparameter selection.198

We propose a method for choosing the scaling parameter (see Equation Equation 1) that yields stable199

results. Selecting both 𝑚, the number of Voronoï regions, and 𝐾, the number of clusters, is difficult.200

We address this by adopting a heuristic: first, choose 𝐾, then determine 𝑚 using a modified Laplacian201

eigengap.202

If𝐾 represents the true number of clusters, the affinitymatrix resembles a graph adjacencymatrix with203

𝐾 connected components. This configuration is characterized by an eigengap at the 𝐾th eigenvalue.204

In Self-Tuning Spectral Clustering (Zelnik-Manor and Perona 2004), the eigengap 𝜆𝐾+1 − 𝜆𝐾 is used205

to evaluate clustering quality for 𝐾 clusters. Following a similar strategy, and assuming 𝐾 is known,206

the Laplacian eigengap at the 𝐾th eigenvalue can select 𝑚, with the scaling parameter fixed.207

Determining the optimal value of 𝑚 using the eigengap is not straightforward. As the affinity matrix208

dimension increases, the number of eigenvalues grows, reducing gaps between them. This makes209

direct comparisons unreliable. To address this, we use the ratio 𝜌 = (𝜆𝐾+1 − 𝜆𝐾)/𝜆𝐾+1. This metric210

is bounded between 0 and 1 and measures the relative difference between consecutive eigenvalues.211

It facilitates meaningful comparisons across different values of 𝑚. A value of 𝑅 close to 1 suggests212

high clustering quality, whereas lower values indicate weaker performance.213

Using this metric, we determine a near-optimal value for 𝑚 by maximizing the average 𝑅 across214

possible values of 𝑚. Additionally, the metric enhances robustness by running the algorithm with215

different random seeds and selecting the clustering result with the highest normalized eigengap.216

4 Numerical experiments217

In this section, the results obtained from testing the Spectral Bridges algorithm on various datasets,218

both small and large scale, including real-world and well-known synthetic datasets, are presented.219

These experiments assess the accuracy, time and space complexity, ease of use, robustness, and adapt-220

ability of our algorithm. We compare Spectral Bridges (SB) against several state-of-the-art methods,221

including k-means++ (KM) (MacQueen et al. 1967; Arthur and Vassilvitskii 2006), Expectation-222

Maximization (EM) (Dempster, Laird, and Rubin 1977), Ward Clustering (WC) (Ward Jr 1963), DB-223

SCAN (DB) (Ester et al. 1996) and GIT (Gao et al. 2021). This comparison establishes baselines across224

centroid-based clustering algorithms, hierarchical methods, and density-based methods.225

The algorithms are evaluated on both raw and Principal Component Analysis processed (PCA-226

processed) data with varying dimensionality. For synthetic datasets, Gaussian and/or uniform noise227

is introduced to assess the robustness of the algorithm.228

4.1 Datasets229

4.1.1 Real-world data230

• MNIST: A large dataset containing 60,000 handwritten digit images in ten balanced classes,231

commonly used for image processing benchmarks. Each image consists of 28 × 28 = 784 pixels.232

• UCI ML Breast Cancer Wisconsin: A dataset featuring computed attributes from digitized233

images of fine needle aspirates (FNA) of breast masses, used to predict whether a tumor is234

malignant or benign.235
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4.1.2 Synthetic data236

• Impossible: A synthetic dataset designed to challenge clustering algorithms with complex237

patterns.238

• Moons: A two-dimensional dataset with two interleaving half-circles.239

• Circles: A synthetic dataset of points arranged in two non-linearly separable circles.240

• Smile: A synthetic dataset with points arranged in the shape of a smiling face, used to test the241

separation of non-linearly separable data.242

4.1.3 Datasets Summary & Class Balance243

Table 1: Datasets Summary & Class Balance

Dataset #Dims #Samples #Classes Class Proportions

MNIST 784 60000 10 9.9%, 11.2%, 9.9%, 10.3%, 9.7%, 9%, 9.9%,
10.4%, 9.7%, 9.9%

Breast Cancer 30 569 2 37.3%, 62.7%
Impossible 2 3594 7 24.8%, 18.8%, 11.3%, 7.5%, 12.5%, 12.5%,

12.5%
Moons 2 1000 2 50%, 50%
Circles 2 1000 2 50%, 50%
Smile 2 1000 4 25%, 25%, 25%, 25%

Class proportions are presented in ascending order starting from label 0.244

4.2 Metrics245

To evaluate the performance of the clustering algorithm, the Adjusted Rand Index (ARI) (Halkidi,246

Batistakis, and Vazirgiannis 2002) and Normalized Mutual Information (NMI) (Cover and Thomas247

1991) are used. ARI measures the similarity between two clustering results, ranging from -0.5 to 1,248

with 1 indicating perfect agreement. NMI ranges from 0 to 1, with higher values indicating better249

clustering quality. In some tests, the variability of scores across multiple runs is also reported due to250

the random initialization in k-means, though k-means++ generally provides stable and reproducible251

results.252

4.3 Platform253

All experiments were conducted on an Archlinux machine with Linux 6.9.3 Kernel, 8GB of RAM, and254

an AMD Ryzen 3 7320U processor.255

4.4 Sensitivity to hyperparameters256

The hyperparameters of the Spectral Bridges algorithm were based on the size of each dataset, 𝑛, and257

the number of clusters, 𝐾.258

To better grasp the sensitivity regarding to 𝑚, the number of Voronoï cells, Spectral259

Bridges was run on the PCA ℎ = 32 embedded MNIST dataset with varying values of260

𝑚 ∈ {10, 120, 230, 340, 450, 560, 670, 780, 890, 1000}. The case 𝑚 = 10 is equivalent to the k-means++261

algorithm. ARI and NMI scores are recorded over 20 consecutive iterations and subsequently plotted.262

As shown by Figure 4, the accuracy seems to be consistently increasing with values of 𝑚, with the263

largest observed gap occurring between values of 𝑚 = 10 and 𝑚 = 120, and flattening thereafter,264
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indicating a tremendous improvement over the classical k-means++ framework even for empirically265

suboptimal hyperparameter values.266
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Figure 4: ARI and NMI scores of Spectral Bridges with varying values of 𝑚.

For other algorithms, such as DBSCAN, labels were used to determine the best hyperparameter267

values to compare our method against the “best case scenario”, thus putting the Spectral Bridges268

algorithm at a voluntary disadvantage.269

4.5 Time complexity270

To assess the algorithm’s time complexity, the average execution times over 50 runs were computed271

for varying numbers of Voronoï regions 𝑚 as well as dataset sizes. With a constant number of clusters272

𝐾 = 5 and an embedding dimension of 𝑑 = 10, the results (see Figure 5) highlight Spectral Bridges273

algorihtm’s efficacy. As discussed previously, we observe a linear relationship between 𝑚 and the274

execution time because the matrix construction is highly optimized and the time taken is almost275

negligeable compared to that of the initial k-means++ centroids initalization.276
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(b) Varying 𝑚, fixed 𝑛 = 5000

Figure 5: Average time taken per model fit.
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4.6 Accuracy277

The algorithm’s accuracy was first evaluated on theMNIST dataset. Metrics were collected to compare278

our method with k-means++, EM, GIT, and Ward clustering. Metrics were estimated by computing279

the empirical average over 10 consecutive runs for each method. Due to limited computational280

resources, we randomly selected a sample of 20,000 data points (one-third of the total) for each run,281

on which all algorithms were trained and tested. To ensure reproducibility, a fixed random seed was282

set at the beginning of all scripts. Note, however, that this does not imply centroids were initialized283

identically for centroid based methods, as these may vary according to the implementation of each284

tested algorithm.285

Let ℎ denote the embedding dimension of the dataset. Spectral Bridges was tested both on the raw286

MNIST dataset without preprocessing (ℎ = 784) and after reducing its dimension using PCA to287

ℎ ∈ {8, 16, 32, 64} (see Figure 6).288
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Figure 6: ARI and NMI scores of k-means++ (pink), EM (green), Ward Clustering (red), GIT (blue),
and Spectral Bridges (purple) on PCA embedding and full MNIST.

Additionally, the proposed algorithm was evaluated on the MNIST dataset after reducing its di-289

mensionality to ℎ ∈ {2, 4, 8, 16} using UMAP (McInnes et al. 2018), a state-of-the-art nonlinear290

dimensionality reduction technique (see Figure 7). To enhance the clustering performance of Spectral291

Bridges, the normalized eigengap method was applied. This approach trains the algorithm with mul-292

tiple initializations and determines the optimal number of Voronoï cells by selecting the configuration293

with the largest normalized eigengap (refer to the Hyperparameter settings section).294

Note the Spectral Bridges is substantially better than other traditional methods and shines even with295

quite simple dimension reduction algorithms.296

For visualization purposes, the predicted clusters by Spectral Bridges and k-means++ were projected297

using UMAP to compare them against the ground truth labels and to better understand the cluster298

shapes (see Figure 8). Note this projection was not used in the experiments as an embedding, and299

thus does not play any role in the clustering process itself. As a matter of fact, the embedding used300

was obtained with Principal Componant Analysis (PCA), ℎ = 32 and 500 Voronoï regions. Note that301

the label colors match the legend only in the case of the ground truth data. Indeed, the ordering of302

the labels have no significance on clustering quality. Importantly, Spectral Bridges demonstrates303
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Figure 7: ARI and NMI scores of k-means++ (pink), EM (green), Ward Clustering (red), GIT (blue),
Spectral Bridges (purple) on UMAP embedding

remarkable accuracy, with the exception of the classes representing digits “4” and “9”, which appear304

to have been merged.305
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Figure 8: UMAP projection of predicted clusters against the ground truth labels.

The Spectral Bridges algorithm was also put to the test against the same competitors using scikit-306

learn’s UCI Breast Cancer data. Once again, the normalized eigengap method was used, and the307

presented algorithm performed well, although the advantage was not as obvious in this case (see308

Figure 9). However, in none of our tests has it ranked worse than k-means++. The results are309

displayed as a boxplot generated from 200 iterations of each algorithm using a different seed, in order310

to better grasp the variability lying in the seed dependent nature of the k-means++, Expectation311

Maximization and Spectral Bridges algorithms.312

Since the Spectral Bridges algorithm is expected to excel at discerning complex and intricate cluster313

structures, an array of four toy datasets was collected, as illustrated in Figure 10.314

Multiple algorithms, including the proposed one, were benchmarked in the exact same manner as315

for the UCI Breast Cancer data. The results show that the proposed method outperforms all tested316

algorithms (DBSCAN, k-means++, Expectation Maximization, GIT, and Ward Clustering) while317

requiring few hyperparameters. As previously discussed, DBSCAN’s parameters were optimized318

using the ground truth labels to represent a best-case scenario; however, in practical applications,319
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Figure 9: ARI and NMI scores of k-means++ (pink), EM (green), Ward Clustering (red), GIT (blue),
and Spectral Bridges (purple) on the UCI Breast Cancer dataset.
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Figure 10: Four toy datasets.
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suboptimal performance is more likely. Despite this optimization, the Spectral-Bridge algorithm still320

demonstrates superior ability to capture and represent the underlying cluster structures.321
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Figure 11: ARI and NMI scores of Spectral Bridges and competitors on standard synthetic toy datasets.
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4.7 Noise robustness322

To evaluate the noise robustness of the algorithm, two experimental setups were devised: one involved323

introducing Gaussian-distributed perturbations to the data, and the other involved concatenating324

uniformly distributed points within a predefined rectangular region (determined by the span of325

the dataset) to the existing dataset. As illustrated in Figure 12, the tests demonstrate that in both326

scenarios, the algorithm exhibits a high degree of insensitivity to noise.327
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Figure 12: Three representations of the algorithm’s predicted cluster centers are displayed as colored
dots, with each point of the Impossible dataset shown as a small black dot. In the left graph, the
dataset is unmodified. In the center graph, 250 uniformly distributed samples were added. In the
right graph, Gaussian noise perturbations with 𝜎 = 0.1 were applied.

5 Conclusive remarks328

Spectral Bridges is an original clustering algorithm which presents a novel approach by integrating329

the strengths of traditional k-means and spectral clustering frameworks. This algorithm utilizes a330

simple affinity measure for spectral clustering, which is derived from the minimal margin between331

pairs of Voronoï regions.332

The algorithm demonstrates scalability, handling large datasets efficiently through a balanced com-333

putational complexity between the k-means clustering and eigen-decomposition steps. As a non-334

parametric method, Spectral Bridges does not rely on strong assumptions about data distribution,335

enhancing its versatility across various data types. It performs exceptionally well with both syn-336

thetic and real-world data and consistently outperforms conventional clustering algorithms such as337

k-means, DBSCAN, and mixture models.338

The design of Spectral Bridges ensures robustness to noise, a significant advantage in real-world339

applications. Additionally, the algorithm requires minimal hyperparameters, primarily the number340

of Voronoï regions, making it straightforward to tune and deploy.341

Furthermore, Spectral Bridges can be kernelized, allowing it to handle data in similarity space directly,342

which enhances its flexibility and applicability. Overall, Spectral Bridges is a powerful, robust, and343

scalable clustering algorithm that offers significant improvements over traditional methods, making344

it an excellent tool for advanced clustering tasks across numerous domains.345
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6 Appendix346

6.1 Derivation of the bridge affinity347

We denote a bridge as a segment connecting two centroids 𝜇𝑘 and 𝜇𝑙. The inertia of a bridge between348

𝒱𝑘 and 𝒱𝑙 is defined as349

𝐵𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘∪𝒱𝑙

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2,

where350

𝑝𝑘𝑙(𝑥𝑖) = 𝜇𝑘 + 𝑡𝑖(𝜇𝑙 − 𝜇𝑘),

with351

𝑡𝑖 = min (1,max (0,
⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩

‖𝜇𝑙 − 𝜇𝑘‖2
)) .

𝐵𝑘𝑙, the bridge inertia between centroids 𝑘 and 𝑙, can be expressed as the sum of three terms, which352

represents the projection onto each centroïds and onto the segment:353

𝐵𝑘𝑙 = ∑
𝑖∣𝑡𝑖=0

‖𝑥𝑖 − 𝜇𝑘‖
2 + ∑

𝑖∣𝑡𝑖=1
‖𝑥𝑖 − 𝜇𝑙‖

2 + ∑
𝑖∣𝑡𝑖∈]0,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2.

The last term may be decomposed in two parts corresponding to the points of the two Voronoï354

regions which are projected on the segment:355

∑
𝑖∣𝑡𝑖∈]0,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 + ∑

𝑖∣𝑡𝑖∈[
1
2 ,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

and each part further decomposed using Pythagore356

∑
𝑖∣𝑡𝑖∈]0,

1
2 [

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝜇𝑘 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

= ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑡𝑖(𝜇𝑘 − 𝜇𝑙)‖
2,

∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝜇𝑙‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝜇𝑙 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

= ∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖(1 − 𝑡𝑖)(𝜇𝑘 − 𝜇𝑙)‖
2

Thus357

𝐵𝑘𝑙 − 𝐼𝑘𝑙 = ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

𝑡2𝑖 ‖𝜇𝑘 − 𝜇𝑙‖
2 + ∑

𝑖∣𝑡𝑖∈]
1
2 ,1[

(1 − 𝑡𝑖)2‖𝜇𝑘 − 𝜇𝑙‖
2,

𝐵𝑘𝑙 − 𝐼𝑘𝑙
‖𝜇𝑘 − 𝜇𝑙‖2

= ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

𝑡2𝑖 + ∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

(1 − 𝑡𝑖)2,

𝐵𝑘𝑙 − 𝐼𝑘𝑙
(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2

=
∑𝑥𝑖∈𝒱𝑘

⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩
2
+ +∑𝑥𝑖∈𝒱𝑙

⟨𝑥𝑖 − 𝜇𝑙|𝜇𝑘 − 𝜇𝑙⟩
2
+

(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖4
.
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6.2 Code358

6.2.1 Implementation359

Numerical experiments have been conducted in Python. The python scripts to reproduce the360

simulations and figures are available at https://github.com/flheight/Spectral-Bridges. The Spectral361

Bridge algorithm is implemented both in362

• Python: https://pypi.org/project/spectral-bridges, and363

• R: https://github.com/cambroise/spectral-bridges-Rpackage.364

6.2.2 Affinity matrix computation365

Taking a closer look at the second step of Algorithm 1 , that is the affinity matrix calculation366

with a 𝑂(𝑛 × 𝑚 × 𝑑) time complexity, most operations can be parallelized leaving a single loop,367

bundling together 𝑚2 dot products into only 𝑚 matrix multiplications, thus allowing for an efficient368

construction in both high and low level programming languages. Though the complexity of the369

algorithm remains unchanged, libraries such as Basic Linear Algebra Subprograms can render the370

calculations orders of magnitude faster. Moreover, the symmetrical nature of the bridge affinity can371

be used to effectively halve the computation time.372

The calculation of the affinity matrix is highlighted by the Python code Listing 1. Though it could373

be even more optimized, the following code snippet is approximately 200 times faster than a naive374

implementation on a small dataset comprised of 𝑛 = 3594, 𝑑 = 2 points, and a value of 𝑚 = 250.375

Notice that the Python code is significantly faster than the R code.376
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Listing 1 Python code for affinity matrix computation
# Initialize the matrix as empty
affinity = np.empty((self.n_nodes, self.n_nodes))

# Center each region
X_centered = [

np.array(
X[kmeans.labels_ == i] - kmeans.cluster_centers_[i],
dtype=np.float32,
order="F",

)
for i in range(self.n_nodes)

]

# Cardinal calculation
counts = np.array([X_centered[i].shape[0] for i in range(self.n_nodes)])
counts = counts[None, :] + counts[:, None]

# Calculate the affinity
for i in range(self.n_nodes):

segments = np.asfortranarray(
kmeans.cluster_centers_ - kmeans.cluster_centers_[i]

)
dists = np.einsum("ij,ij->i", segments, segments)
dists[i] = 1

projs = sgemm(1.0, X_centered[i], segments, trans_b=True)
np.clip(projs / dists, 0, None, out=projs)
projs = np.power(projs, self.p)

affinity[i] = projs.sum(axis=0)

affinity = np.power((affinity + affinity.T) / counts, 1 / self.p)
affinity -= 0.5 * affinity.max()

# Scale and exponentiate
q10, q90 = np.quantile(affinity, [0.1, 0.9])

gamma = np.log(self.M) / (q90 - q10)
affinity = np.exp(gamma * affinity)
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