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Mixture notations
a ajg most frequent response level in cluster g for a categorical variable j
b

c shape parameter for (inverted) Gamma or (inverted) Wishart distribution
c0 shape parameter for a prior
cg shape parameter for posterior of the g-th component
cn (or cT ) shape parameter for posterior, if independent of g
cXg , cYg , . . . distinguish between the posterior of X and Y

d dimension of data space
e Neperian constant
e exposures
ei exposures associated with case i

f fg(·|·) = density of g-th component

g index for groups/components in a finite (or infinite) mixture
h index for states in a finite (or infinite) Markov mixture
i index for cases/observations
j index for variables
k index for models
l index for the categorical variable levels
m index for MCMC iterations
θ(m) m-th draw for parameter θ

n number of cases/observations
ng number of cases/observations in g-th group

o
p probability density function (see P&S)
q
r dimension of the component-specific parameter θg
s index for EM algorithm iteration

t index for time
u
uj column vector of loading matrix U
v disturbances (state space models, etc)
vt disturbances at time t
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w regressor
wi row vector of regressors for i-th case
wt row vector of regressors at time t
wit row vector of regressors for i-th case at time t

x independent observations
x data collection: x = (x1, . . . , xn)
xi row vector of regressors for i-th case
xt row vector of regressors at time t
xit row vector of regressors for i-th case at time t

y data/outcome/dependent observation
y data collection: y = (y1, . . . , yn)
yi data (vector) for i-th case
yt data (vector) at time t
yt data (vector) up to time t; i.e. yt = (y1, . . . , yt)
yit data (vector) for i-th case at time t

z latent indicator
z data collection: z = (z1, . . . , zn)
zi group to which i-th case belongs (takes values in 1, . . . , G)
zig = 1 if case i ∈ group g, 0 otherwise
ẑig Estimate of zig at the MLE using the MAP operator
z∗ig estimate of zig from the CEM algorithm (= 0 or 1)

A shape matrix
Ag shape matrix for g-th component
B
Bg shape matrix for g-th component when the matrix of eigenvector is the identity matrix

C scale parameter for a Gamma, inverted Gamma, Wishart, inverted Wishart distribution
C0 scale parameter for a prior
Cg scale parameter for posterior of the g-th component
Cn (or CT ) scale parameter for posterior, if independent of g
CXg , CYg , . . . distinguish between the posterior of X and Y

D
Dg matrix of eigenvectors for g-th component
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E expectation (see P&S)
F
G number of groups in a finite mixture
H number of states in a hidden Markov model
I state of a hidden Markov chain (takes values in 1, . . . ,H)
It state at time t
J

K number of models
Lj number of categorical levels of variable j
M number of MCMC iterations
M0 burn-in of a MCMC chain

N counts for hidden states
Ngh number of transition from g to h

O
P probability (see P&S)
Q covariance matrix in a random effects model
R loss function in a Bayesian decision problem
T number of time series observations
Ti number of repeated measurements/observations per case (unit)
V variance (see P&S)
W regressor/design matrix in a regression model
X regressor matrix in a regression model
Y random variable
Z

L likelihood for mixture model
Lc complete-data likelihood
Lo observed-data likelihood
` log likelihood for mixture model
`c complete-data log likelihood
`o observed-data log likelihood
Mk k-th model considered
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α parameter vector of the multinonial dist. for the latent class model with categorical variables
β regression parameter
βg regression parameter in group g
βt regression parameter at time t in a time varying model
βsi individual regression parameter in random effects model
γ regression parameters in MNL model for mixtures-of-experts model
γg regression parameter in group g

δ model indicator in a (Bayesian) variable selection problem
ε vector of the scattering parameters for the latent class model with categorical variables

ε error term in a regression model
εi error term for case i
εt error term at time t
εit error term for case i at time t

ζ
η weight distribution in finite (or infinite) mixture
ηg weight of the g-th mixture component
θ vector of all parameters of a model
θg parameter vector of g-th mixture component (not including ηg)
ι
κ

λ
λg Exponential mixtures: intensity parameter for g-th group
λg Poisson mixtures: relative risk for g-th group
λg Gaussian mixtures: volume parameter for g-th group
λgj j-th eigenvalue of Σg

µ mean/expectation of a random variable
µg mean vector for g-th component (Gaussian, Poisson, Student-t, etc)
µt time-varying level in a state space model
ν degrees of freedom parameter (Student-t, χ2-distribution)
νg degrees of freedom parameter for the g-th component in a Student-t mixture

ξ transition matrix of the hidden Markov chain in a hidden Markov model
ξgh probability to move from state g to state h

π π = 3.14159
π success probability
πg binomial mixtures: success probability in the g-th component
πjg binary latent class model: success probability for variable j in g-th component
πjlg latent class model: success probability for category l of variable j in g-th component
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1
Applications in Genomics

Stephane Robin and Christophe Ambroise
UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, France

Mixture models are intensively used in genetics and genomics either for identifying latent
structures or for modeling densities. According the type of mixture component and the na-
ture of the hypothesis about latent structures, mixture models may be relevant in numerous
different frameworks.

In this chapter, use of mixture models in genetic and genomic are presented by increasing
complexity of the latent structure. The first section considers applications with indepen-
dent latent variable structures to genome and transcriptome analysis. The second section
illustrates the use of Hidden Markov Models (HMM) in genomics, presenting a variety of
problems with their associated translation in terms of emission distributions and hidden
states. Eventually the last section introduces more complex dependency structures used in
genomics such as Hidden Markov Random Field (HMRF) or Stochastic Block Model (SBM)
with their associated parameter estimation difficulties.

1.1 Mixture Models in Transcriptome and Genome Analysis
1.1.1 Analyzing the genetic structure of a population
Identifying the underlying structure of populations is a recurrent task in genetics. It al-
lows to correct population stratification in genetic association studies (13) or to study the
evolutionary relationships between populations as well as to learn about their demographic
histories (16).

In this context, mixture models emerge as a natural strategy to infer the structure of the
population or the structure of the genome itself. Indeed there is a two level structure: each
individual can be considered as belonging to a subpopulation but regions of the genome of
a given individual can themselves be considered as having different origins. This last case
is known as genetic admixture. It occurs when individuals from two or more previously
separated populations begin interbreeding.

Many different parametric approaches exist, differing mainly in the estimation method
but relying on the same basic mixture of multinomials. The so called Structure algorithm
(64) proposes a mixture of multinomial distributions in a Bayesian framework with MCMC
inference. FRAPPE (76) uses a maximum-likelihood approach associated with an EM al-
gorithm and Admixture (4) computes the same estimates using a sequential quadratic pro-
gramming algorithm with a quasi-Newton scheme. We also mention the Bayesian Analysis
of Population Structure (BAPS) (18) which includes the number of subpopulations in the
model.

1
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Let us describe the reference Structure model. Structure uses Bayesian statistical in-
ference to cluster individuals from genotype data or to determine admixture proportions
(64). Different statistical models are associated with each endgame of the method. Both
BAPS and Structure models assume the estimated subpopulations to be in Hardy-Weinberg
equilibrium. The model without admixture assumes G subpopulations from which were
sampled the n diploid individuals genotyped at L multi-allelic (but often bi-allelic) loci
(yi,1` , yi,2` )`=1,...,L,i=1,...,n. The parameters of the mixture are the allele frequencies θ = (θgj`)
where θgj` = p(y(i,a)

` = j|zi = g, θ) is the frequency of allele ` at locus j in population g.
The conditional distribution for individual i is

p(yi = (yi1, · · · , yiL)|zi = g) =
∏
`

∏
a=1,2

θg,yi,a
l
,`.

This resulting mixture has numerous parameters since each locus (often of the order of
the million) of each class is described by a different vector of proportions. Bayesian infer-
ence is used to obtain the distribution of p(z, θ|x). In the original paper (64) the posterior
distribution

p(z, θ|y) ∝ p(z)p(θ)p(y|z, θ),

considers a uniform prior for z and a Dirichlet prior for θ.
To account for admixture, a new parameter is introduced in the model. The param-

eter π = (πig) where πig represents the proportion of individual i’s that originated from
population g:

p(zi= (zi1, · · · , ziL)|πi) =
∏
`

∏
a=1,2

πi
z

(i,a)
`

,

where z(i,a)
` is the population of origin of allele copy y(i,a)

` . The conditional distribution then
becomes

p(yi|zi, πi) =
∏
`

∏
a

θ
z

(i,a)
`

,y
(i,a)
`

,`
.

For each individual, the parameter πi has a Dirichlet prior distribution as well. The esti-
mated posterior distribution becomes p(z, π, θ|y).

Because of the high-dimensionnality of the problem, this type of inference can be really
slow and variational inference offers a faster alternative in the Bayesian framework (66).

Other approaches may also consider mixture models associated with kernel methods. In
that context the use of adapted kernel function enable to operate in a high-dimensional,
implicit feature space via Gaussian Mixture Models. SHIPS (Spectral Hierarchical Clus-
tering for the Inference of Population Structure in Genetic Studies) is an avatar of such
approaches (14). It is based on a spectral clustering algorithm. The algorithm first uses a
kernel based on the allele sharing distance (ASD) that has been previously used to identify
genetic patterns among populations (54). In the implicit feature space, classical GMM are
used to recursively split the individuals in subpopulations.

1.1.2 Finding sets of co-transcribed genes
Gene expression is modulated (up or down) depending on tissue (e.g., liver vs. brain),
development stage (e.g., fetal vs. adult), disease status, genotype (e.g. mutant vs. wild) or
dynamically as a response to environmental signals.

A DNA microarray consists of thousands of microscopic spots of DNA oligonucleotides
from a specific DNA sequence, known as probes (or reporters) that are used to hybridize
a cRNA sample (called target). The DNA microarray technology allows to measure the
expression levels of thousands of genes across different conditions. These measurements
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provide a ”picture” of cells functioning at a given time. Such technology is thus of great
importance in many applications such as functional genomic, medical and clinical diagnosis,
drug discovery, targeting and monitoring . . .

The data resulting from this type of experiments is a gene expression matrix X whose
columns describe the genes and rows describe the samples. Notice that each sample is also
described by other variables such as the conditions of the experiment. Most of the time
reasonable experiments involve a set of replicates for each condition. Gene expression data
analysis aims at pointing to differences between conditions and giving insight into global
gene patterns.

Such data has many features, few observations and is most of the time very noisy.
Statistical analysis of microarray raise issues and challenges for statisticians. Analyzing
such data usually requires a succession of steps (49): a normalization process to make all
samples comparable, a differential analysis to pinpoint genes which have different expression
across the conditions, and an exploratory data analysis step to enhance the understanding of
the results. The analysis of microarray data relies on univariate and multivariate descriptive
statistics at each step in order to control the process or gain insight into the data. Clustering
approaches are often used and mixture model is a classical tool in this context (37). When
dealing with DNA microarray, data is considered continuous and Gaussian mixture is the
dominant model.

In gene expression analysis, clustering aims at finding a structure within the samples
or/and within the genes. Both approaches bring different and relevant information about
the data. The seminal paper of (23) proposes to cluster the genes by mean of a classical
hierarchical agglomerative clustering using average-linkage and an initial metric based on
euclidian distance. The author observe that genes of similar function cluster together. This
observation justifies the use of clustering for searching hints about gene function guided by
a ”guilty by association” principle.

When considering the clustering of samples, high dimension (i.e. the number of genes)
represents a problem. Indeed, classical mixture models are not able to deal with samples
where the number of variables is much greater than the number of samples, unless the
variables are assumed to be uncorrelated within a cluster. This problem is caused by the
estimation of the covariance matrices whose number of parameters grows quadratically with
the number of variables. (82) exploit the representation of the covariance matrix in terms
of its eigenvalue decomposition:

Σg = λgDgAgD
>
g ,

where Dg is the matrix of eigenvector, Ag is a diagonal matrix whose elements are propor-
tional to the eigenvalues and λg a scalar. Reduction of the number of free parameters in the
covariance matrix can also be achieved by mixture of factor analyzers (50) :

Σg = BgB
>
g +Dg,

where Bg is a matrix of loading factors and Dg a diagonal matrix.
Since the mid-2000, Next Generation Sequencing (NGS) has become the new standard

tool for measuring gene expression. Compared to data produced with microarrays, NGS
data are count-based measures, discrete, positive, and highly skewed. We introduce the
main two alternatives that have been proposed to adapt model-based clustering approaches
to such data: it is possible to change the normalization of the data to adapt to Gaussian
mixture (40; 34) or develop model specifically for discrete positive skewed data.

Although a multivariate version of the Poisson distribution does exist, (68) assume
variables to be independent conditionally on the components. Considering discrete gene
expressions yij` of gene i in condition j for replicate `, the component distribution of the
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expression vector of gene i is a product of Poisson distributions:

yi|g ∼
d∏
j=1

rj∏
`=1
P(yij`;µij`g).

The authors propose to further reduce the number of parameters using parametrization in
the spirit of above mentioned Gaussian parametrization, assuming a common mean across
the replicates

µij`g = wiλjg,

or adapting the mean in function of known library sizes sj`

µij`g = wisj`λjg,

since the number of reads mapped to a gene is highly dependent on the gene size.
Biclustering is a technique in two way data analysis, which aims at finding a structure of

both rows and columns of a data table. This approach is popular for exploring DNA microar-
ray since there is often a structure both in samples and genes. Looking for a gene/sample
block structure can obviously be achieved in two steps (one step for each dimension) or can
be searched simultaneously in both dimension (8). A widespread graphical representation
of this approach is the classical heatmap which is an false color image of the data table with
reordering of the rows and columns according to some identified latent structure.

There are many different types of structure and algorithms in the field of biclustering.
Block structure is a possibility and can be considered as a latent structure. So called Latent
Block Model (LBM, mixture model with associated estimation procedure) have been pro-
posed in this context by (30) for identifying a simultaneous partition of rows and columns.
The density of y knowing the partition of the rows z and the partition of columns w is

p(y|z, w, α) =
∏
ijg`

ψ(yij ;αg`)zigwj` ,

where ψ is a parametric distribution of parameter vector αg` for block g`. In that context the
likelihood is not tractable and variational EM (see Section 1.3.3) or Bayesian strategies have
to been proposed for estimating the parameters of the mixture. Although model selection is
a complex problem in this context since the likelihood is not tractable, Bayesian inference
offers efficient alternative for designing criterion (38).

1.1.3 Variable selection for clustering with GMM
As mentioned above, Gaussian mixture models are not identifiable in high dimension setting
(when the number of observations is small compared to the number of variables) and strate-
gies have been developed for limiting the number of parameters of the model. Biological
data typically falls into this high-dimension setting not only because of transcriptome but
also with epigenome, proteome, metabolome, molecular pathways, molecular imaging, etc.
Dimension reduction is thus a key issue in the field. It can be achieved via factor analysis,
regularization other sort of constrained parametrization (15). But a simple alternative for
reducing the dimensionality consists in selecting relevant variables. Variable selection is an
important and old topic in supervised learning but has a more recent history in cluster-
ing. The difficulty of the problem plays undoubtedly a role in this difference of treatment.
Nevertheless variable selection in discrimination (41) and clustering share common aspects.
Variable selection may be performed in different ways. The so-called filter approach consists
in selecting ”informative” variables beforehand. In the context of transcriptome the most
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widespread method is differential analysis (see Section 1.1.4). A second possibility consists in
selecting (or ordering) the variables after clustering (if clustering is possible) (50). The last
possibility consists selecting the variables while estimating the mixture model parameters.

In a Bayesian paradigm (75) propose a method using a reversible jump algorithm to
simultaneously choose the number of mixture components and select relevant variables.
The paper of (65) defines two different sets of variables: relevant and irrelevant variables.
They do not assume independence between the relevant and irrelevant variables for the
clustering, as considered in (75). The model of (65) considers a partition of the variables
into two main subsets: the variables relevant for clustering S, and the irrelevant ones Sc.
The model skilfully mixes clustering and regression. The integrated likelihood is decomposed
into two multiplicative parts

p(y|g) = pclust(yS |g)preg(ySc |yS),

pclust(yS |g) being a classical mixture model and preg(ySc |yS) a multivariate regression model
where the variable in Sc are explained as linear combination of the variable in S. (47) propose
a refined version of this model avoiding non-parsimonious models by selecting the predictor
variables in the linear regression part of the model in a two steps stepwise algorithm.

In supervised learning, penalized regression represents a popular approach for selecting
variable while estimating the parameters. The same kind of approach has been explored in
the context of mixture model. (59) propose for example a penalized log-likelihood criterion
by assuming a Gaussian mixture model with common diagonal covariance matrices. The
LASSO like penalty penalizes the sum of the absolute values of the component j of cluster
means g:

pλ(θ) = λ
∑
gj

|µgj |.

There are many related works in this line of research borrowing and adapting the idea
developed for supervised methods (81).

1.1.4 Mixture models in the specific case of multiple testing
Because of the dimensionality of most genomic data, multiple testing issues have become
a common place in genomic analyses. The most emblematic case is this of the detection of
differentially expressed genes, which can be summarized as follows. Consider all (known)
genes from a given species and, for each of them, perform a sample comparison test with
null hypothesis

H0i = ’gene i has the same expression level in all conditions’.

In a frequentist setting, each gene is then associated with a test statistics, the distribution
of which is known under H0i and from which a p-value yi is derived. Such a setting raises
obviously a multiple testing problem about which a huge literature exists (see (19; 72) for
reviews). Multiple testing procedures aim at controlling some multiple type I error rate such
as family-wise error rate (FWER), false discovery rate (FDR), etc. Most of these procedures
rely on the fact that, under H0i, yi has a uniform distribution U [0, 1].

Unsupervised classification point of view.

Efron et al. (21) rephrased this problem as a clustering problem, in which one wishes to
classify genes according to the latent variable zi defined as follows:

zi =
{

0 if H0i is true (’null’ gene),
1 if H0i is not (differentially expressed gene).
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The unsupervised classification task can then be achieved using the mixture model

yi ∼ η0f0 + (1− η0)f1 (1.1)

where η0 stands for the proportion of null genes, f0 for the pdf of the uniform distribution
U [0, 1] and f1 for the pdf of the p-values under the alternative hypothesis H1i, which is
supposed to be common to all genes. This model provides an alternative view of the problem,
in which the (estimated) conditional probability τi0 = η0f0(y1)/[η0f0(yi) + (1 − η0)f1(yi)]
is interpreted as a local FDR (22). A natural classification rule then consists of classifying
gene i as positive (i.e. non ’null’) when τi0 is below a given threshold t. Note that, in this
setting, because f0 is known, the proportion η0 of null genes can be estimated under mild
conditions on f1 (see e.g. (74)).

Parametric mixture models.

A first parametric version of Model (1.1) was proposed by (5), were f1 is supposed to be
a Beta distribution Be(a, b). In the same vein, (48) considered a two-group mixture model
similar to Model (1.1), but applied to the transformed ỹi = Φ−1(yi), so that the transformed
null distribution f̃0 is a standard Gaussian distribution. In this approach, the alternative
distribution f̃1 is supposed to be Gaussian N (µ1, σ

2
1). The probit transform Φ−1 turns out

to be efficient, as it zooms into the region where p-values are close to 0, which improves the
identification of the positive genes (see Figure 1.1). (48) further elaborate on the estimation
of the FDR and suggest to consider the estimate

F̂DR(t) =
∑
i

τi0I0(τi0 < t)
/∑

i

I0(τi0 < t) .

FIGURE 1.1
Left: Histograms of p-values with fitted Beta mixture (black lines, dashed=f0, dotted=f1)
and rescaled conditional probabilities (gray lines). Right: Histograms of probit-transformed
p-values with fitted Gaussian mixture, same legend.
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Semi- and non-parametric mixture models.

One of the key feature in Model (1.1) is that the distribution f0 is known, which allows for a
higher flexibility for f1. (5) propose a ’semi-parametric’ extension of it, taking f1 as a mix-
ture of Beta distributions itself. Equation (1.1) then takes the standard form yi ∼

∑G
g=0 ηgfg

but, in terms of classification, one is only interested in the distinction between group 0 and
the union of all other groups, so gene i is classified according to τi+ :=

∑G
g=1 τig = 1− τi0.

In a non-parametric setting, Bordes at al. (12) prove that Model (1.1) is identifiable
provided that f1(·|θ1) = ψ(· − θ1) where ψ is some even function. They consider both a
symmetrization-based and a moment estimate for the location parameter θ1. (70) consider a
kernel density estimate of f1, for the estimation of which a convergent algorithm is proposed,
provided that η0 is known.

1.2 Hidden Markov Models in Genomics: Some Specificities
Because many genomic data are collected at loci (probe, nucleotide) located along the
genome, hidden Markov models (HMM) have become a standard tool in that field (20; 73).
We remind that an HMM deals with data collected in a sequential manner and is similar
to a mixture model, except that the {zt}1≤t≤n form a Markov chain on {1, . . . , G} with
transition matrix Π. The group zt to which the observation collected at locus t belongs
to is called its (hidden) state. In most HMM, the observations {yt}1≤t≤n are supposed
to be independent conditionally on the hidden states, the conditional distribution being
named the emission distribution. In this section, we first present a typical genomic problem
where HMM can be used and then we introduce a series of special case where the genomic
context requires to consider more sophisticated models in terms of hidden states, emission
distribution and dependency structure.

1.2.1 A typical case: Copy number variations
Many diseases are associated with genomic alterations which consist of either the loss or the
amplification of some regions of the genome (2). As a result, some regions of the genome
are not present in two copies (as expected in a normal cell of a diploid species, such as
human), but in less (zero or one copy, named ’loss’) or in more (three, four or even more
copies, named ’gain’). A series of technologies have be developed in the last decades to get
a measure yt that is related to the number of genomic copies at locus t. These technologies
range from micro-arrays to sequencing technologies (NGS) (3). A typical example of the
signal at hand is displayed in the left panel of Figure 1.2.

Hidden Markov models are especially well suited to address the task of both finding
the location at which the number of copies changes and to classify each of the segments
according to the number of copies or simply as ’normal’, ’loss’ or ’gain’. (28) first proposed
to use an HMM with Gaussian emission for the detection of CNV based on micro-array
data. The classification step, which consists of retrieving the hidden path (zt) is referred to
as ’CNV calling’ and can be achieved using the Viterbi algorithm (77).

The detection of the loci where the copy number varies can by seen as a change-point
detection problem, as proposed by (61), but this approach does not address the calling
step. As a complement, (62) introduced a mixture model where each region belongs to a
certain group g, the data yt being independent with same distribution φg. The inference Is it a

Gaussian
distribu-
tion? If not
replaces φg
by fg
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FIGURE 1.2
SNP data from (63), chromosome 11. Left: Log R ratio log2[(at + bt)/2] as a function of t.
Right: B-allele frequency = bt/(at + bt) as a function of t.

of such a model can be made using an specific EM algorithm where the M-step includes a
segmentation step that can be efficiently solved using dynamic programming.

The size of the data varied a lot in the last decade, from few hundreds of probes per chro-
mosome on original CGH-arrays (3) to the number of nucleotides per chromosome (i.e. about
108 for the longest human one) for sequencing technologies. Indeed the forward-backward
recursion used in the E-step of the EM algorithm is linear, whereas the regular dynamic
programming is quadratic. Still, the number of iterations of the EM algorithm is not known
and recent advances have dramatically reduced the complexity of the segmentation algo-
rithms (see e.g. (69; 39)). So many CNV analyses are done using segmentation approaches
(using a post-processing for calling) for which dynamic programing-like approaches turn out
to perform well (42; 32).

1.2.2 Complex emission distribution
As in any domain, HMM need to be adapted to the nature of the signal under study.
Because of the variety of both the biological objects and technologies, a huge variety of
emission distributions ψ have been considered in genomics. First ψ must accommodate
to the fact that some technologies (e.g. microarrays) provide a continuous signal whereas
others (e.g. NGS) a discrete signal (counts). As expected, Gaussian and Poisson emission
distributions are respectively the most popular parametric distributions although, in the
later case, the negative binomial seems preferable. Still, less easy-to-handle distribution
such as the negative binomial have turned out to be more relevant for a series of application
using NGS data (see e.g. (71; 67)).

Also, the efficiency of many molecular technologies depends on local properties of the
genomic sequence such as the GC-content (proportion of g and c nucleotides). In order
to correct this bias, the emission distribution can account for some local covariate xt, so
fg(yt) = p(yy|zt = g) becomes f(yt;xt) = p(yt|zt = g, xt) (see e.g. (10; 67)).
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DNA sequences.

HMM were early used for genome annotation, typically to determine the boundaries of iso-
chores (regions with different nucleotide composition) or to distinguish between gene coding
regions and non-coding regions. In such analyses, the observed vector y = (y1, y2, . . . , yn)
is made of the DNA sequence itself, each yt being one of the element of the nucleotides
alphabet: yt ∈ {a, c, g, t}.

The most naive model consists of an HMM with multinomial emission distribution with
parameter θg = (θga)a where θga represents the frequency of nucleotide a in state g. However,
such a simple model turns out to be much too poor to account for the local complexity of the
DNA sequence. This model has been generalized in (55), who considered Markov chains as
emission distributions to account for the local frequency of di-, tri-, or any oligo-nucleotide.
Indeed, as the sufficient statistics for a Markov chain of order m (denoted Mm) are the
frequencies of all sequences of m + 1-nucleotides. As consequence, a Markov model Mm
with transition probability θg

θg((am, . . . a1); b) := P(yt = b|zt = g, (yt−m, . . . , yt−1) = (am, . . . , a1)),

accounts for the frequency of the (m + 1)-nucleotides in state g. Such a model is denoted
M1-Mm in (55) as the hidden states (zt) follow an M1 model and the observed sequence
(yt) conditionally arises from an Mm model. As an example, coding-regions are composed
of triplets of nucleotides (codons) that are ultimately translated into amino-acids, which
constitutes the building block of a protein. An M1-M2 model can typically account for this
triplet structure (57).

Multivariate signal.

Several molecular technology are intrinsically comparative in the sense that, at each locus
t, they provide a pair of measures. This holds for CGH-arrays, which compare the genomic
material from a normal with a test sample to detect genomic alterations. This is also true
for micro-arrays, which allow to compare the level of transcription of a given locus t in
two different conditions. SNP-arrays, which will be discussed later, also yield in a bivariate
signal (at, bt). In some situation, one of the signal is simply considered as a covariate (10).
In other cases, one may chose to consider a summary variables such as yt = bt−at, although
this obviously yields a loss of information.

Copy number variation and loss of heterozigocity.

An interesting case is this of the joint detection of CNV and loss of heterozygocity (LOH)
using SNP arrays. Single nucleotide polymorphism (SNP) refers to single nucleotide loci
t spread along the genome where two alternative nucleotides are observed in the human
population, whereas the neighborhood of the locus is very conserved. The most frequent
allele is arbitrarily named At and the minor allele Bt. SNP arrays provide a signal (at, bt)
where at (resp. bt) proportional to the abundance of A (resp. B) in the sample. At a normal
locus, one should have at+bt ≈ 2 because two copies of each chromosome exist. This sum is
often transformed into the Log R ratio LRRt = log2[(at + bt)/2], which is close to 0 in the
normal case (see region I in Figure 1.2 left). Furthermore, in a normal situation, the B-allele
frequency (BAFt := bt/(at + bt)) should be close to either 0, 1/2 or 1, corresponding to the
three possible normal genotypes: AA, AB and BB (region I in Figure 1.2 right). Note that
it is equivalent to observe (at, bt) and (LRRt, BAFt).

As described in Section 1.2.1, CNV are revealed by the LRR profile. Still the joint
analysis of the two profiles may reveal more complex patterns, such as region V of Figure
1.2 where LRRt seems normal (left panel) but where no heterozigocity is observed (right
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panel). Such a pattern suggests that one copy of this region has been lost and has been
then rebuild by copying the remaining copy, so that this region is now made of two identical
copies, making all loci homozygous. Although such events do not affect the copy number,
they may be of interested as their genomic diversity has been reduced of one half and as
favorable alleles may have been lost. More complex patterns may arise (see regions II, III
and IV of Figure 1.2) when the total number of copies is not 2 (normal case) but more (say
3) resulting in a BAF around 0, 1/3, 2/3 or 1. Note that these ratios remain theoretical
as the sample is often contaminated with normal cells, which shrinks the empirical BAF
towards 0, 1/2 or 1 (63).

The analysis of such data aims at classifying regions with respect to both the copy
number and the heterozigocity status. The fully normal case corresponds to a copy number
of two and three possible genotypes at each locus: AA, AB and BB. As a consequence, in
this state, the observed signal yt = (at, bt) is distributed according to a bivariate mixture
with three components (corresponding to each possible genotypes). From a general point of
view, this problem can be modeled with an HMMwhere emission distribution are themselves
mixtures (see (78))

φg(yt) =
∑
k

wgkψ(yt; γk), whith
∑
k

wgk = 1

where ψ is some parametric distribution with parameter γ. Note that, in the present case,
the parameter γk does not depend on g as several states g may involve the same component
(see e.g. regions I and V from Figure 1.2). The reader is left to the determination of the
number of components for any given number of copies and heterozogocity status. (31) and
(17) provide a more extensive description of this problem.

Non-parametric emission distribution.

Indeed the classification performances of a HMM strongly rely on the choice of the emission
distributions it involves. In the case of a bivariate continuous signal, bivariate Gaussian
emission distribution are attractive. Still a careful modeling of the respective variance matrix
in the vein of (25; 11) can dramatically improve the performances, as shown in (9).

Still, fully parametric emission distributions may not be flexible enough. As mentioned
above, mixtures can be used as emission distributions (78; 43). The identifiability of such
a model was not addressed in these references but has been proven since then in (29),
who propose a non-parametric HMM, considering a kernel-based shape for each emission
distribution:

fg(yt) =
∑
s

wgsψ(yt − ys)

where ψ is some centered pdf and wgs is the contribution of the data point s to the definition
of fg. Note that, as a counterpart of flexibility, non-parametric HMM may provide less
interpretable results, as the estimate of fg does not always tell to which biological regime
the state g corresponds.

1.2.3 Complex hidden states
Most HMM used in genomics are used for classification purposes, for which the hidden space
resumes to very few easily interpretable states. Still, the hidden space can be much refined
in order to include prior knowledge. Genome annotation is an emblematic example: the aim
is to detect coding regions in a genome, only based on the genomic sequence itself but also
taking advantage of all the knowledge we have about the structure of genes.
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Gene detection from genomic sequences

In prokaryote organisms, the sequence coding for a given gene is often divided into non-
adjacent regions called exons (in-between the regions being calls introns). An HMM ded-
icated to the detection of gene-coding region must therefore have at least three states
corresponding to non-coding (i.e. between gene) regions, exons and introns, respectively. In
addition to this, all gene coding regions start with a so-called ’start’ codon atg. So a fourth
state should be added, through which the hidden Markov chain must necessarily transit
when going from the non-coding state to the exon state. Figure 1.3 depicts the graph of
the hidden Markov chain proposed by (35) to account for a series of such characteristics,
including the fact that genes can coded in both directions of the sequence.

FIGURE 1.3
Structure of the hidden Markov chain used for gene detection (35).

A general property of Markov chains is that the sojourn time of the hidden chain in
state g has a geometric distribution with failure probability Πgg. Side information (e.g.
the empirical distribution of the length of known exons) may suggest that this property
is not desirable (51). Still, the geometric distribution is a side product of the Markovian
assumption, which allows for the use of the forward-backward algorithm for the inference. A
typical trick to keep the Markovian structure while modifying the sojourn time distribution
consists of building ’macro-states’, that is to split state g into sub-states g1, g2, . . . gb forcing
the transition from sub-state gk−1 to sub-state gk. As the result, the sojourn time has a
negative binomial distribution with parameter b and Πgg. The parameter b can be fitted (or
manually tuned) to fit the distribution length of the exons known in species similar to this
under study.

Gene expression profiles

In the same vein, sub-states can be used to distinguish between a main classification step
and a more refined behavior of the signal. For example, (58; 53) are interested in under-
standing the transcriptionnal landscape, which means both detecting transcribed regions
(main task) and the way the level of transcription varies within each of these regions (sec-
ondary task). To this aim, the ’transcribed’ main state is divided into a series of secondary
hidden states corresponding to different levels of transcription and among which Markovian
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transition also occur. The secondary hidden structure allows to account for the dynamic
dimension of the transcriptional process. Indeed a given gene is typically transcribed from
the ’start’ to the ’stop’ so, at a given time, a fraction of the ’start’ end has already started
to be degraded (after translation) whereas a fraction of the ’stop’ end has still not been
synthesized (before the end of transcription).
The distribution of the hidden states can itself be modeled to account for exogenous infor-
mation such as the annotation of the genome (9).

1.2.4 Non-standard hidden Markov structure
As mentioned above, HMM are quite popular in genomics because of the 1D structure that
underlines many ’omic’ data. Still more complex hidden structures can be encountered, two
examples of which we give below.

Paired HMM for sequence alignment.

Sequence alignment is one of the oldest problem in bioinformatics, which aims at comparing
genomics regions (e.g. genes) observed in two different species. Suppose we observe the
sequences A = (gatctgaac) and B = (gacgtta), the first step to compare them is to align
them, that is to make them match as well as possible. Such an alignment can be viewed as
an HMM (xXxXxXx) with bivariate observed data yt = (at, bt) ∈ {–, a, c, g, t}2, where at
(resp. bt) stands for the letter from sequence A (resp. B) observed at the aligned position
t. Four hidden states are then typically considered, the corresponding emission distribution
having disjoint support:

match: {(a, a), (c, c), (g, g), (t, t)};

mismatch: {(a, c), (a, g), (a, t), (c, a), (c, g), ..., (g, t)};

insertion: {(–, a), (–, c), (–, g), (–, t)};

deletion: {(a, –), (c, –), (g, –), (t, –)};

Note that the aligned positions t are not observed in advance. In practice, the whole inference
process is rarely carried out. Most often, the transition matrix is given in advance and its
entries are interpreted as costs of each possible transitions, the emission distributions being
uniform over their respective supports (except for mismatches). The alignment algorithm
then simply consists of the Viterbi algorithm. Figure 1.4 (left) gives a representation of the
most probable path (top), and the resulting alignment (bottom).

Tree-structured models.

Trees are often used to described the past evolution of a population, a trait or a genome. The
tree structure is indeed consistent with many evolutionary scenarios. In many situations,
only present observations are available, although we are interested in the past evolution.
As a consequence, we are faced with situations as depicted in Figure 1.5 where the data at
all past nodes (also referred to as ancestor nodes) are unobserved. In this framework, most
model assume that the trait (or the genome sequence) evolves as a Markov process along
the branches of a given phylogenetic tree. The aim is then to infer the parameters that
governs this evolutionary process, which typically requires some insight about the value of
the trait at the ancestor nodes.

EM can be used to infer the value of the trait in an ancestor node. As often, the critical
step is the E step where moments of the conditional distribution p(z|y) need to be computed.
The case of the tree is actually not far from this of HMM where the forward-backward
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g a t c t g a a c
g ↘
a ↘

−→
c ↘
g ↓
t ↘

−→
t −→
a ↘

−→

t : 1 2 3 4 5 6 7 8 9 10
A : g a t c – t g a a c
B : g a – c g t – t a –

FIGURE 1.4
Label: Example of paired-HMM for sequence alignment. Top left: most probable hidden
path: ↘= match, −→= mismatch, ↓= insertion, , −→= deletion. Bottom left: resulting
alignment.

FIGURE 1.5
Example of an evolutionary tree. Only present nodes are observed (yi) whereas ancestor
nodes (zj) are hidden.

recursion enables us to compute these moments. Indeed an ’upward-downward’ recursion
can derived in a similar way (24) to get the conditional distribution p(zj |y) for each internal
node zj .

We only give a flavor of the upward recursion, based on the example of Figure 1.5. The
upward recursion goes from the leafs (yi) to the root and consists of computing the con-
ditional distribution of each ancestor node given its offsprings. p(z7|y4, y5) and p(z6|y1, y2)
are first computed directly. The remaining conditional distributions are then obtained as

p(z8|y1, y2, y3) =
∫
p(z8|z6, y3) p(z6|y1, y2) dz6

p(z9|y1, y2, y3, y4, y5) =
∫∫

p(z9|z8, y7) p(z8|y1, y2, y3) p(z7|y4, y5) dz7 dz8

which ends the upward recursion. We only refer to (44) and (6) for two applications of this
type of modeling.
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1.3 Complex dependency structure
In the preceding section, we presented models for which a genuine EM can be applied
because the dependency structure is either sequential or tree structured. More complex
structures may be required in some applications.

1.3.1 Markov Random Fields
Considering for example the genetic structure of a population (see Section 1.1.1), geo-
referenced individuals may be considered. Spatial and genetic information are somehow
related and two individuals living close by are more likely to be genetically close. To take
this prior information into account, it is relevant to consider a Hidden Markov Random Field
(HRMF) as prior distribution for the latent variable describing the population structure
(26).

Markov fields extend the dependence structure to stochastic processes with indexes
belonging to a multidimensional space, rather than simply to a subset of R. There are two
types of Markov Random field (MRF): Markov fields with continuous indexes, commonly
used in theoretical physics and Markov fields with discrete indexes, used, among other
things, as models for statistics of a spatial nature. In applications to genomics we are
mainly concerned with the second category.

When the domain of the index is a subset of Rd rather than a subset of R, the idea of left
and right in relation to an index no longer applies, and MRF must revert to a more general
concept of neighborhood. The neighborhood system can be modeled via a contiguity graph
where each node corresponds to an index and each vertex to a neighborhood relationship.

In the population structure example, nodes are not distributed regularly and Markov
modeling requires that relations of contiguity are explicitly defined. One solution is to draw
a Voronoï tessellation and to specify that two sites are contiguous if their respective Voronoï
tiles have an edge in common. The Strauss model represents a natural prior distribution
for the latent cluster variable. It can be considered as a generalization of the Ising model,
in the case where the variables take G discrete values (G ≥ 2). In the isotropic case — i.e.
where there is no particular spatial direction — the Gibbs distribution is defined by the
energy function:

U(z) = −β
∑

r,s∈S:r∼s
I{zs=zr} = −β

∑
r,s∈S:r∼s

zs · zr (1.2)

where the binary vector zs denotes the class of node s (zsk = 1 if node s belongs to class
g) and r ∼ s means that r and s are neighbors. This energy function therefore counts the
number of pairs of contiguous nodes which have the same value, and is maximized when
the variables of the entire set of nodes are identical. In physics this model is referred to as
the Potts model.

The same Potts model has been used as prior for the spatial normalization of array-CGH
data (56). In this latter case the hidden variable was coding for a type of experimental
artifact. Identifying this spatial experimental bias allowed to tune the bias adjustment for
each area of the micro-array

This type of prior about graph neighborhood can also be found in differential analysis.
The classical approach for differential analysis relies on univariate test statistics for selecting
a short list of genes. Then links from selected genes to known biological pathways through
gene set enrichment analysis can be performed in order to identify involved pathways (80).
In that context directly assuming a prior model considering that neighboring genes in the
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network are more likely to have a joint effect may improve the relevance of the differential
analysis.

1.3.2 Stochastic block-model
The analysis of biological networks have become a common place in bioinformatics. Such
networks typically describe the interactions between a set of entities such as genes, proteins
or, at a higher level, bacterial species. Such data typically consists of a set of n nodes, each
corresponding to an entity, and in the value yij of the edge between nodes i and j. Because
of the diversity of the interactions, the form of yij ranges from binary (simple presence or
absence of the edge), to continuous uni- or multivariate.

Understanding the topology of such a network has been one of the primary task. The
clustering point-of-view can be used to this aim, assigning each node to a specific class with
a typical role in the network. This results in the well-known stochastic block-model (SBM)
(27; 33), in which hidden classes {zi}’s are drawn independently for each node and edges
are drawn independently conditionally on the zi’s. Importantly, the distribution of the edge
yij is conditional on the class of both nodes i and j:

p(yij |zi, zj) = φzi,zj (yij).

In the binary case, conditional on zi = g and zj = g′, edge yij is present with probability
γgg′ . (60) give a series of examples of use of SBM for various biological networks.

1.3.3 Inference issues
Both HMRF and SBM raise inference issue. Indeed, in both cases the hidden labels zi’s
are not independent conditionally on the observed data y. In HRMF, their conditional
dependency structure is given by the graph G and in SBM it turns out to be the complete
graph (46). The latent block-model introduced in Section 1.1.2 raises similar issues. In such
cases, no factorization can be hoped to compute efficiently the moments of the conditional
distribution p(z|y) that a required in a regular EM algorithm.

Because of the size of the data, variational approximation are often used in this field,
as they result in deterministic and reasonably fast algorithms. The general principle of
these techniques is to replace the hard-to-compute distribution p(z|y) with an approximate
distribution q easier to handle. So, the regular E step is replaced with an approximation
step

q(h+1) = arg min
q∈Q

D[q∗(·)||pθ(h)(·|y)],

where Q is a restricted class of distribution (typically factorisable) and D is a divergence
measure. In the specific case where D is chosen to be the Kullback-Leibler divergence, it
can be seen that the variational EM (VEM) algorithm aims at maximizing a lower bound
of the likelihood of the data simply because, denoting Eq the expectation wit respect to q,

log pθ(y) = Epθ(·|y)[log pθ(y, z)]− Epθ(·|y)[log q(z)]
≥ log pθ(y)−KL[q(·)||p(·|y)] = Eq[log pθ(y, z)]− Eq[log q(z)].

A huge literature exist on these techniques. We refer to (36) for a tutorial, to (52) for a
discussion on the choice of D and to (79) for a complete tour.

This approach can be extended to a Bayesian setting, resulting in so-called variational
Bayes inference. In this case, an approximation of the joint conditional distribution p(θ, z|y)
is looked for, see e.g. (7) for an introduction and (45; 1) for applications to SBM.
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