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1 |  INTRODUCTION

Network inference. Network inference (or structure inference) has become a topical problem in various 
fields such as biology, ecology, neurosciences, social sciences, to name a few. The aim is to unravel the 
dependency structure that relates a series of variables that can be jointly observed. Graphical models 
(see, e.g. Lauritzen, 1996) provide a natural framework to achieve this task as it allows to encode the 
dependency structure into a graph, the nodes of which are the variables. Two variables are connected 
if and only if they are dependant, conditionally on all others.

Most methodologies build on the assumption that the network is sparse, meaning that only a small 
fraction of variable pairs are conditionally dependent. The case of Gaussian graphical models (GGM) 
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Abstract
Network inference aims at unravelling the dependency 
structure relating jointly observed variables. Graphical 
models provide a general framework to distinguish be-
tween marginal and conditional dependency. Unobserved 
variables (missing actors) may induce apparent conditional 
dependencies. In the context of count data, we introduce 
a mixture of Poisson log- normal distributions with tree- 
shaped graphical models, to recover the dependency struc-
ture, including missing actors. We design a variational EM 
algorithm and assess its performance on synthetic data. We 
demonstrate the ability of our approach to recover envi-
ronmental drivers on two ecological data sets. The corre-
sponding R package is available from github.com/Rmoma l/  
nestor.
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is especially appealing as the network corresponds to the support of the precision matrix of the joint 
Gaussian distribution. The use of a sparsity- inducing penalisation gives raise to the celebrated graphi-
cal lasso (Friedman et al., 2008). In a more general context, Chow and Liu (1968) consider a spanning 
tree structure to impose sparsity to the network, but this drastic form can be alleviated using mixtures 
of trees (Kirshner, 2008; Meilă & Jaakkola, 2006).

One important aspect of network inference is to distinguish between variables that are marginally 
dependent (possibly because of their respective dependency with some common other) from variables 
that are directly related, that is conditionally dependant. This distinction requires to account for as 
many confounding effects as possible, which includes not only all the other variables but also available 
covariates. It also requires to consider the existence of some missing actors (or missing nodes), that 
may induce an apparent direct dependency.

Abundance data. Count data is found in a multitude of fields (sociology, biology, economy, ecol-
ogy, etc.). It results from the counting of events in a given setting such as crime statistics in a state 
or the number of produced transcripts of a gene in an experiment. The statistical processing of count 
data cannot always rely on classical methods developed for continuous Gaussian data and appeals 
for specific methods. It often exhibits specificities such as zero- inflation and a large dispersion. This 
work is motivated by the analysis of so- called abundance data, a count data avatar, arising from eco-
logical studies where the number of individuals (the abundance) of a series of living species (plants 
or animals) is observed in a series of sites. In this context, network inference aims at understanding 
which pairs of species are in direct interaction. The covariates are typically environmental descriptors 
(altitude, temperature, distance to the see, etc.) of each collection site, while the variables are the re-
spective abundances of each species from the community under study.

Graphical modelling for counts is not as well- developed as GGM. In his seminal paper Besag 
(1974) introduces generic Markov Random Field models (MRF) for lattice systems. He assumes that 
the graph of conditional independence is known, whereas this paper aims at inferring the graph. 
The likelihood- based inference is often problematic due to intractable normalising constants. Pseudo- 
likelihood or surrogate likelihood approaches such as neighbourhood selection (Yang et al., 2013) 
represent a tractable solution implemented in the xMRF R package (Wan et al., 2016). Inouye et al. 
(2016) proposes also complex models with associated parameter estimation methods using node- wise 
regressions with �1 regularisation and likelihood approximation methods using sampling. Bayesian 
computation algorithms based on Markov chain Monte Carlo (MCMC) can also be used for inferring 
the conditional independence graph (Roy & Dunson, 2020). Models relying on copulas (Inouye et al., 
2017) have been proposed but many joint species distribution models resort to a latent Gaussian layer, 
which encodes the dependency structure between the species (Popovic et  al., 2018, 2019; Warton 
et al., 2015). The Poisson log- normal model (PLN: Aitchison & Ho, 1989) enters this category: it 
assumes that a multivariate Gaussian random variable is associated to each species in each site and 
that the observed abundances are conditionally independent Poisson variables. The PLN model has 
already been applied to abundance data, both for dimension reduction (Chiquet et al., 2018) and net-
work inference (Chiquet et al., 2019; Momal et al., 2020) PLN model is not directly modelling the 
conditional independence graph between observed variables. Nevertheless there is a strong relation 
between the dependence structure in the latent and observed layers. The PLN model may thus be con-
sidered as a graphical state- space model.

Missing actors. In many situations, it is likely that not all actors involved in the system have been 
observed. The term ‘actors’ refers to either species that were not observed but nonetheless influence 
the abundance of others, or environmental conditions that were not accounted for. Missing actors may 
be quantitative or qualitative. In the latter case, it defines a latent group structure (Ambroise et al., 
2009).
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In the perspective of unravelling the conditional independence structure, this can typically lead to 
the inference of spurious edges, which are links between observed actors that are not in direct inter-
action. In the graphical model framework, not accounting for one variable amounts to consider the 
marginal distribution of the rest of the system, as described in the right panel of Figure 1.

Figure 2 further illustrates the interest of accounting for covariates and missing actors when aiming 
at inferring a graphical model. The illustration is based on synthetic data including one covariate and 
one missing actor. The ‘blind’ inference (b), including neither the covariate nor the missing actor, 
yields irrelevant results. Accounting for the covariate provides an estimate of the graph marginalised 
with respect to the missing actor (c), that is the network resembles the original graph with additional 
links between the neighbours of the missing actor. Including a missing actor retrieves the original 
dependency structure (d).

Several approaches have been proposed for network inference accounting for quantitative missing 
actors in the context of GGM. Many of them (Chandrasekaran et al., 2011; Giraud & Tsybakov, 2012; 
Lauritzen & Meinshausen, 2012; Meng et al., 2014) adapted the principle of Robust PCA (Candès 
et al., 2011) to the concentration matrix, assuming it is a sum of two matrices: one low- rank and one 
sparse. In terms of missing actors in a network, the low- rank part corresponds to missing actors con-
nected to all variables, whereas the sparse part refers to missing actors having a local effect. Following 
Robin et al. (2019) (also in the context of GGM), we focus on the later aspect, that is looking for miss-
ing actors not necessarily linked to all others. As far as we know, no model has been proposed for the 
inference of missing actors from abundance data.

Variational inference. The model we consider in this paper involves different types of variables, 
namely an unknown tree- shaped graphical model, a continuous latent layer (to induce dependence be-
tween the species) and unobserved actors. The most popular approach for the inference of such models 
is the EM algorithm (Dempster et al., 1977), which requires the evaluation of the conditional distri-
bution of all unobserved variables given the data. In the problem we consider, some latent variables 
are (multivariate) continuous and others are discrete, and their joint conditional distribution turns out 
to be intractable. In this work, we resort to a variational approximation (Wainwright & Jordan, 2008) 
of this conditional distribution and to a variational EM algorithm for its inference (see, e.g. Blei et al., 
2017).

Our contribution. In the context of the Poisson log- normal model, we propose a tree- based ap-
proach to recover the structure of latent graphical model including actors. The model we consider in-
volves several layers of unobserved variables with intractable conditional distributions, thus we resort 
to a variational EM algorithm (Blei et al., 2017) for its inference. We introduce the model in Section 
2 and describe its variational inference in Section 3. The performance of the algorithm is assessed via 
simulations in Section 4. The use of the proposed model is illustrated in Section 5, where we demon-
strate its ability to recover environmental drivers on two ecological data sets. The inference procedure 
is implemented in the R package nestor, available at github.com/Rmoma l/nestor.

F I G U R E  1  Example of the marginalisation when covariate x is unobserved. Left: complete graphical model 
(including x). Right: marginal graphical model of the observed variables (excluding x)
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2 |  MODEL

2.1 | Poisson log- normal and tree- shaped graphical models

2.1.1 | Poisson log- normal model

We start with a reminder on the multivariate Poisson log- normal model, with the example of abun-
dance data. The abundances of p species observed on n sites are gathered in the n × p matrix Y where 
Yij is the count of species j in site i, and the row i of Y, denoted Yi, is the abundance vector collected 
on site i. A covariate vector xi with dimension d is also measured on each site i and all covariates are 
gathered in the n × d matrix X. The PLN model states that a (latent) Gaussian vector Ui of size p with 
variance matrix R = (�kl)kl is associated to each site: 

the sites being assumed to be independent. To ensure identifiability, we let the diagonal of R be made of 
1’s, so R is actually a correlation matrix. All latent vectors Ui are gathered in the n × p matrix U. The PLN 
model further assumes that species abundances in all sites are conditionally independent, and that their 
respective distribution only depends on the environment and the associated latent variable: 

(1){Ui}1≤i≤n iid, Ui ∼�p(0, R),

(2){Yij}1≤i≤n, 1≤j≤p |U independent, Yij |Uij ∼𝒫
(
exp(oij + x

⊺

i
�j + �jUij)

)
,

F I G U R E  2  Example of network inference from counts simulated under the PLN model with p = 14 observed 
species, r = 1 hidden species, n = 200 samples, a Gaussian covariate X ∼ �(1, , 1) and the original dependency 
structure (a). (b): network obtained under the null model and without any missing actors assumed. (c): network 
inferred while taking X into account and without missing actors assumed. (d): network inferred while accounting for 
both X and one missing actor, coloured in yellow [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b) (c) (d)
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where �j is the latent standard deviation associated with species j, and the vector d × 1 of regression co-
efficients �j describes the environmental effects on species j. The PLN model allows the specification of 
an offset term, denoted oij in Equation (2). In the regression literature, the offset is described as a given 
component in the estimation problem (Hardin & Hilbe, 2007) which can be used to account for exposure 
or sampling effort in count data models. The offset term can be improved with additional computation 
to correct for some observational bias. In genomics, effective library size are computed as offsets, in an 
effort to eliminate the compositional bias of RNA- seq data (Lun et al., 2016; Robinson & Oshlack, 2010). 
The offset can also be corrected species- wise, for example to account for species detectability in ecology 
(Guillera- Arroita, 2017).

An important feature of the PLN model is that the sign of the correlation between the observed 
counts is the same as this of correlation between the latent variables (Aitchison & Ho, 1989): 
sign(ℂor(Yij, Yik)) = sign(ℂor(Uij, Uik)). To this respect the PLN model enables to capture the residual 
(i.e. once corrected for environmental effects) correlation structure between the species abundances 
through the corresponding latent variable.

2.1.2 | Tree- shaped graphical models

Network inference relies on the assumption that few species are directly dependent on one another, 
meaning that the underlying graphical model is sparse. In the framework of the PLN model, the 
graphical model of interest rules the distribution of the latent vectors Ui and is encoded in the preci-
sion matrix �: = R

−1. A way to foster sparsity is to impose Ω to be faithful to a spanning tree T, that 
is: Ui ∼�p(0, �−1

T
) where the non- zero terms of �T correspond to the edges of the tree T . However, 

this hypothesis is very restrictive as it allows only p − 1 links among p species (Chow & Liu, 1968). 
A more flexible approach consists in assuming that the latent vectors are drawn from a mixture of 
Gaussian distributions, each faithful to a tree T (Kirshner, 2008; Meilă & Jaakkola, 2006; Meilă & 
Jordan, 2000; Schwaller et al., 2019): 

where �p is the set of all spanning trees with p nodes. As a consequence, the mixture model involves 
|�p | = pp−2 components. We further assume that the tree distribution {p(T)}T∈�p

 can be written as a 

product over the edges: 

 The weights � jk are gathered in the p×p symmetric matrix β with diagonal zero. These weights are de-
fined up to a multiplicative constant, so only p(p−1)/2−1 of them may vary independently. This PLN 
model with latent tree- shaped dependency structure is similar to that considered by Momal et al. (2020). 
Note that the weight � jk associated with the edge (j,k) is not the same as the probability for this edge to be 
part of the random tree T, which is Pr{(j, k) ∈ T} =

∑
T∋(j,k)p(T). (see Figure 3 of Momal et al., 2020, for 

an illustration). The marginal edge probability Pr{(j,k) ∈ T} obviously increases with � jk, but the relation 
between the two is not straightforward because of the spanning constraint.

(3)Ui ∼
∑

T ∈�p

p(T)�p(0,�−1
T

),

(4)p(T) = B−1
∏

(j,k)∈T

� jk, with B =
∑

T ∈�p

∏
(j,k)∈T

� jk.
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The proposed model actually deals with the graphical model in the latent layer, which does not 
necessarily coincide with the graphical model of the observed layer (see, e.g. Figure 1 in the ArXiv 
report by Chiquet et al., 2018). This limitation is common to all models for multivariate count data 
that rely on a latent layer.

2.2 | Introducing the missing actor

2.2.1 | PLN model with missing actors

We now introduce the concept of missing actors, which corresponds to variables that are involved 
in the graphical model but are not associated to observed variables. To involve such actors in the 
model, we assume that a complete latent vector Ui with dimension p + r is associated to site i, where 
r is the number of missing actors. This complete vector can be decomposed as U ⊺

i
= [U

⊺

Oi
U

⊺

Hi
] where 

UOi (with dimension p) corresponds to observed species and UHi (with dimension r) corresponds to 
the missing actors. The complete n × (p + r) latent matrix U can be decomposed in the same way as 
U = [UO UH], UO and UH having dimension n × p and n × r, respectively. The model we consider 
states that

1. The complete latent vectors Ui are all iid and distributed according to a mixture similar to 
(3) and (4) but with Gaussian distributions (and matrices �T and β) of dimension (p  +  r), 
and trees drawn from �p+r;

2. the abundances Yij of the p observed species are distributed according to (2), replacing U with UO,

In the sequel, we shall refer to the elements of UO and UH, respectively, as ‘observed’ and ‘hidden’ 
(or ‘missing’) latent variables, whereas obviously none of them are actually observed. Figure 3 dis-
plays the graphical model of the quadruplet (T , UO, UH , Y). The observed data Y still arise from an 
PLN model, but the graphical model of the observed latent UO may not be sparse due to the marginal-
isation over the hidden latent UH. Our main goal is to infer the dependency structure of the complete 
latent vectors, that is to estimate the elements of the matrices �T and the edges weights β. The latent 
dependency structure is similar to this considered by Robin et al. (2019), but the inference strategy 
much differs, because of the additional hidden layer.

2.2.2 | Identifiability restriction

The proposed model only makes sense because the graphical model of the complete latent vectors 
U

⊺

i
= [U

⊺

Oi
U

⊺

Hi
] is supposed to be sparse. Missing actors could obviously not be identified from a 

F I G U R E  3  Graphical model linking the count data Y, the latent layer of Gaussian parameters U = (U
O

, U
H

), and 
the latent tree T
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regular PLN model, without restriction on the precision matrix Ω, as only the marginal precision 
matrix of the UOi could be recovered. Still, to ensure identifiability, we impose the same restriction 
as Robin et al. (2019) that missing latent variables are not connected with each other (the block cor-
responding to UH × UH is diagonal in each �T).

3 |  INFERENCE

As said in the introduction, we resort to a variational EM algorithm to perform the inference due to 
the complex latent structure.

3.1 | Variational inference

The log- likelihood of the so- called complete data, that is (Y, U, T), writes 

where Ω stands for the set of all tree- specific precision matrices: � = {�T , T ∈�p+r} and where the 
second equality is a consequence of the graphical model given in Figure 3. The conditional distributions 
of the latent variables U and of the tree T given the data Y are both intractable. Variational inference then 
aims at maximising a lower bound of the log- likelihood of the observed data, which writes in our context 
as 

where q(U, T) stands for the approximate joint conditional distribution of the latent layer and of the tree: 
q(U, T) ≃ p(U, T|Y).

3.1.1 | Approximate distribution

The efficiency of variational inference mostly depends on the choice of q(U, T), which is a balance 
between computational ease and adequation to the target distribution p(U, T|Y). We adopt here a clas-
sical product form for the approximate distribution: we impose to the latent variables U and to the 
tree T to be independent according to q (whereas actually they are not conditional on the data), with 
respective marginals h and g: 

Because the sites are independent, and without further assumption, the distribution h is a product over all 
sites. Following Chiquet et al. (2018), we approximate the conditional distribution of each latent vector Ui 
with a Gaussian distribution, that is: 

logp�,�,�(Y, U, T)= logp�(T)+ logp
�

(U|T)+ logp�(Y|U)

= logp�(T)+ logp
�

(U|T)+ logp�(Y|UO)

(5)
𝒥(�,�,Ω;q)= logp�,�,�(Y)−KL

�
q(U, T)‖p�,�,�(U, T�Y)

�
=�qlogp�,�,�(Y, U, T)+ℋ(q(U, T)),

q(U, T) = h(U)g(T).

h(U) =
∏

i

�p+r(Ui;mi, Si)
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with all Si diagonal. We gather all the mean vectors mi in the n × (p + r) matrix M and pile up the diago-
nals of all the variance matrices Si in the n × (p + r) matrix denoted S.

3.1.2 | Variational EM

The variational EM algorithm then consists in maximising the lower bound � defined in Equation (5) 
with respect to the parameters (M step), and to the approximate distributions (VE step), alternatively.

M step:  At iteration t + 1, given the current approximate distribution qt(U, T) = gt(T)ht(U), the M    
step consists in the update of the model parameters, solving 

Observe that the matrix of edge weights β is considered here as a parameter to be estimated, as opposed 
to Robin et al. (2019), where is was kept fixed and supposed to be given.
VE step: Maximising � with respect to (wrt) q is equivalent to minimising the Küllback– Leibler 

divergence between q(U, T) and p�,�,�(U, T |Y) that appears in (5). Because we adopted a product 
form for q, the solution of the VE step for both g and h is known to be a mean- field approximation 
(Wainwright & Jordan, 2008). More specifically, maximising � gives 

and 

Observing that logp�(T) + logp
�

(U |T) can be written as a sum over all the edges present in T, we 
see that gt+1(T) has a product form. So, without any further assumption, we may parameterise g(T) in 
the same way as p�(T): 

We gather the �̃ jk’s in the (p + r) × (p + r) matrix �̃. The parameters �̃, M and S are called the variational 
parameters, in the sense that it is equivalent to optimise � wrt (g, h) or wrt (�̃, M, S).

3.2 | Proposed algorithm

The model we consider is an extension of the PLN model, for which an efficient inference algorithm 
have been implemented in the PLNmodels, an R package available on CRAN (Chiquet et al., 2018, 
2019).

(6)
�t+1 = arg max

�

�ht

[
logp�(Y|UO)

]
, �

t+1 = arg max
�

�qt

[
logp

�
(U|T)

]
,

� t+1 = arg max
�

�gt

[
logp�(T)

]
.

(7)
gt+1(T)∝ exp

{
�ht

[
logp�t+1, � t+1, Ωt+1 (Y, U, T)

]}
∝ exp

{
logp� t+1 (T)+�ht

[
logp

�
t+1 (U|T)

]}
,

(8)
ht+1(U) ∝ exp

{
�gt+1

[
logp�t+1, � t+1, Ωt+1 (Y, U, T)

]}
∝ exp

{
�gt+1

[
logp

�
t+1 (U|T)

]
+ logp�t+1 (Y|UO)

}
.

(9)g(T) =
∏
jk∈T

�̃ jk∕B̃ where B̃ =
∑

T ∈�p+r

∏
jk∈T

�̃ jk.
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3.2.1 | Prior estimates of θ, M
O
 and S

O

To alleviate the computational burden of the inference, we take advantage of this available tool to 
get an estimate of the regression coefficient matrix �̂ and an approximation of the parameters of the 
observed latent variable conditional distribution hO(UO) ≃ p(UO |Y). These latter parameters are MO 
and SO (first p columns of M and S, respectively) and we denote M̃O and StO their approximation. The 
quantities �̂, M̃O and S̃O are kept fixed in the rest of the algorithm, so the VEM algorithm only deals 
with the remaining unknown quantities: the model parameters β, Ω, and the variational parameters �̃, 
MH, SH. As a consequence, the final estimates we get yield a lower value of the objective function � 
as compared to an optimisation wrt to all model and variational parameters.

3.2.2 | M step

This steps deals with the update of the model parameters β and �T. Some of the calculations are tedi-
ous and postponed to Appendix B.

Edges weights β: As shown in Equation (6), the maximisation of � requires the computation of the 
derivative of �gt [logp�(T)] wrt β, which includes the derivative of the normalising constant B. The lat-
ter can be computed via an extension of the matrix tree theorem (see Meilă & Jaakkola, 2006, Lemma 
1 reminded in Appendix A). Setting the derivative of the expectation to 0 yields the following update 
(same as in Momal et al. (2020) and detailed in appendix B.1): 

where M(β) is defined in Lemma 1 and Pt
kl
 is the probability that the edge (k, l) belongs to the tree T ac-

cording to gt: 

Pt
kl
 is computed using a result from Kirshner (2008) (reminded as Lemma 2 in appendix A). We now 

define the binary variable ITkl which indicates the presence of the edge kl in tree T, so Pt
kl
= �gt [ITkl] and 

IT = [ITkl]1≤k,l≤(p+r) is the adjacency matrix of tree T.
Precision matrices �T: For a given dependency structure in the Gaussian graphical model frame-

work, Lauritzen (1996) gives maximum likelihood estimates for the precision matrix. These estima-
tors are given as functions of sufficient statistics of the multivariate Gaussian distribution. Indeed in 
the exponential family framework, the M step of any EM algorithm requires the computation of the 
expectation of a sufficient statistic, under the current fit of the variational laws (see McLachlan and 
Krishnan (2007)). Here as U|T is centred, a sufficient statistic is U ⊺

U. We now let SSD denote the 
matrix defined as 

where St
+

=
∑

iS
t
i
. Applying Lauritzen’s formulas, we get: 

� t+1
kl

=
Pt

kl

M(� t)kl

,

Pt
kl
= ℙgt{kl ∈ T} =

∑
T ∈�:
T ∋ kl

gt(T) =
1

B̃
t

∑
T ∈�:
T ∋ kl

∏
uv∈T

�̃
t

uv
.

SSDt = �ht (U
⊺
U) = (Mt)⊺M

t + S
t
+
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where ssdt
kl
 stands for the entry kl of the matrix SSDt. The calculations are postponed to Appendix B.2. 

Observe that estimates of the off- diagonal entries �t+1
Tkl

 do not depend on T provided that the edge (k, l) 
belongs to T. Thus the estimates of the off- diagonal terms of the precision matrices �T are common to 
all trees sharing a given edge. This does not result from any assumption on the shape of �T, but from the 
properties of the maximum likelihood estimate of Gaussian variance matrix. In the sequel we will simply 
denote off- diagonal terms by �kl (as opposed to �Tkk which still depends on T).

Other quantities are needed for later computations. Lauritzen gives the maximum likelihood esti-
mator of every entry of the correlation matrix RT corresponding to an edge kl being part of T, which 
is Rt+1

Tkl
= ssdt

kl
∕n. Hereafter for any matrix A, A[kl] refers to the bloc kl of A: A[kl] = (aij){i,j} ∈ {k, l}. The 

determinant of �t+1
T

 factorises on the edges of T and writes as a function of blocs of the correlation 
matrix as follows: 

Finally, we define the matrix �t+1
= �gt [�

t+1
T

]. Noticing that, for k ≠ l, �gt [�
t+1
T

]kl = �gt [�
t+1⊙ IT ]kl,   

edges probabilities appear as follows: 

3.2.3 | VE step

This step deals with the update of the approximate conditional distributions g and hH, namely the 
update of the corresponding variational parameters �̃, MH and SH.

Approximate conditional tree distribution g(T): Computing the expression (7) yields the following, 
where the constant term ’cst’ does not depend on a specific edge: 

 Then remembering the product form of gt+1 given in (9), we obtain the expression for each edge varia-
tional weight: 

Approximate Gaussian distribution h: According to (8), we have that 

(10)

�t+1
Tkl

=

⎧
⎪⎨⎪⎩

−ssdt
kl
∕n

1− (ssdt
kl
∕n)2

if kl∈T

0 otherwise

,

�t+1
Tkk

=1+
�

l

ITkl

(ssdt
kl
∕n)2

1− (ssdt
kl
∕n)2

,

(11)|�t+1
T

| =
(∏

kl∈T

|Rt+1
T[kl]

|
)−1

and for any kl ∈ T , |Rt+1
T[kl]

| = 1 − (ssdt
kl
∕n)2.

�t+1
kl

= −Pt
kl

ssdt
kl
∕n

1 − (ssdt
kl
∕n)2

, �t+1
kk

= 1 +
∑

l

Pt
kl

(ssdt
kl
∕n)2

1 − (ssdt
kl
∕n)2

.

loggt+1(T)= logp� t+1 (T)+�ht

[
logp

�
t+1 (U|T)

]
+cst

=
∑
kl∈T

log� t+1
kl

−
n

2
log|Rt+1

[kl]
|−�t+1

kl

[
(Mt)⊺Mt

]
kl
+cst

(12)�̃
t+1

kl
= � t+1

kl

|||R
t+1
[kl]

|||
−n∕2

exp
(
−�t+1

kl

[
(Mt)⊺Mt

]
kl

)
.
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 Using the properties of the conditional Gaussian distribution we have that 

Now, to get ht+1
H

(UH), it suffices to integrate ht+1(UH |UO) wrt hO (the parameter of which are kept fixed 
along iterations) to get 

3.3 | Algorithm peculiarities

3.3.1 | Initialisation

As for any EM algorithm, the choice of the starting point is paramount. The initialisation we use here 
takes the primary estimate M̃O as an input.
Initial clique: As a starting point, we look for a clique of species as potential neighbours of the 

missing actor h. There are many different ways to do so, and if any prior knowledge exists on that 
matter it should be used. Otherwise, such a clique can be found using sparse principal component 
analysis (sPCA; Erichson et al., 2020), where principal components are formed using only a few of 
the original variables, which is consistent with the assumption that each missing actor is connected 
only to some actors in the network. When applying sPCA to M̃O, the set of non- zero loadings of 
each principal components provides us with an initial clique of neighbours of each missing actor.

Parameters initialisation: The eigenvectors resulting from the sPCA also provide us with a starting 
value M0

H
, as well as a first estimate of the latent correlation matrix R0. The parameter β is uni-

formly initialised.

3.3.2 | Numerical issues

Because the Matrix tree theorem and Kirshner’s formula, respectively, resort to the calculation of a 
determinant and a matrix inversion, the proposed algorithm is exposed to numerical instabilities. To 
circumvent these issues, we rely on both multiple- precision arithmetic and likelihood tempering (via 
a parameter α, similarly to Schwaller & Robin, 2017). More details are given in Appendix B.4.

3.3.3 | Model selection

In practical analyses, the number of missing actors r needs to be chosen in some way. A natural way to 
select r is to resort to a penalised likelihood criterion, such as BIC (Schwarz, 1978) or ICL (Biernacki et al., 
2000). The variational counterpart of these criteria remains an open question for many models. In our case, 
the simple plug- in of the lower- bound � in place of the log- likelihood yielded poor results. For the time 
being, we propose to choose r using a cross- validation heuristic described in Section 5.1 and Appendix D.

loght+1(U) = �gt+1 logp(Y |UO) −
1

2
tr
(
�

t+1

T
(U ⊺

U)
)
+ cst.

ht+1(UH |UO) =�

(
UH; − UO�

t+1

OH

(
�

t+1

H

)−1

,
(
�

t+1

H

)−1
)

.

M
t+1
H

= − M̃O�
t+1

OH

(
�

t+1

H

)−1

, S
t+1
H

=
(
�
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.
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4 |  SIMULATIONS

4.1 | Count data sets

For the simulation study, 300 count data sets of 15 species in total including one missing actor are 
generated, thus p = 14 and r = 1. We simulate scale- free graphs for the dependency structures, using 
the R package huge (Zhao et al., 2012) available on CRAN. The missing species h is chosen as the 
one with highest degree. Then, the variance– covariance matrix for the latent layer U is built as the 
observed part of the inverse of the adjacency graph matrix made positive definite. Finally, U and the 
observed abundances Y are simulated according to the PLN model defined in Section 2. This protocol 
yields over- dispersed counts which vary from 0 to about 500 on average (see Appendix C). To focus 
on the missing actor reconstruction, this simulation study does not involve covariates.

We further measure the influence of the missing actor with its degree, distinguishing three influ-
ence classes: Minor (degree ≤ 5), Medium (5 < degree ≤ 7) and Major (degree ≥ 8).

4.2 | Experiment and measures

For each simulated data set, the VEM algorithm is initialised as described in Section 3.3. More spe-
cifically and because we only look for one missing actor, we consider the cliques corresponding to 
each of the first two principal components of sPCA, and their respective complements, which pro-
vides us with four cliques. Then four VEM algorithms, as described in Section 3.2, are run starting 
from each of the four candidate cliques, and the one yielding the highest lower bound � is kept. For 
all simulations, we set the precision of the convergence criterion to � = 10−3, the tempering param-
eter to α = 0.1 and the maximal number of iterations to 100. The inference quality is assessed regard-
ing the global network inference, the missing actor’s position in the network, and its values along 
the n sites. We refer to this first procedure as the blind procedure. Additionally, we define the oracle 
procedure as running the VEM with the set of true neighbours of the missing actor as initial clique.

For each procedure, a general measure of the whole network inference quality is first given by 
comparing the inferred edge probabilities to the original dependency structure. This is done using the 
area under the ROC curve (AUC) criteria. Then, to be more specific and target the neighbours of node 
h specifically, the probabilities of edges involving h are transformed into binary values using the 0.5 
threshold. The values are then compared to the original links of h and yield quantities of true/false 
(T/P) positives/negatives (P/N), from which are built the precision (also known as the positive predic-
tive value, TP/(TP+FP)) and the recall (also known as the true positive rate, TP/(TP+FN)) criteria. 
Finally, we assess the ability to reconstruct the missing actor across the sites by computing the abso-
lute correlation between its inferred vector of means (Mh) and its original latent Gaussian vector Uh.

4.3 | Results

Simulations performance measures are gathered in Table 1 and Table 2 for blind and oracle proce-
dures, respectively. The distributions of the quality measures are displayed in Figure 4.

Table 1 shows the network is well inferred, as all AUC means are above 0.85, with almost perfect 
inference when the influence of the missing actor is major. Its neighbours and values per site are very 
well retrieved in these cases with mean recall values above 0.9 and mean correlation above 0.8, with 
a great confidence in the algorithm outputs as mean precision is above 0.95. However, there exists a 
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F I G U R E  4  The influence of the missing actor is measured with its degree, distinguishing three influence classes: 
Minor (degree ≤ 5), Medium (5 < degree ≤ 7) and Major (degree ≥ 8). The distributions of performance measures are 
displayed for each class of influence: AUC measures the retrieval of the dependence structure between all variables, 
observed and missing. Precision and recall are specific to the missing actor links [Colour figure can be viewed at 
wileyonlinelibrary.com]

T A B L E  1  Blind procedure using cliques from initialisation. The influence of the missing actor is measured with 
its degree, distinguishing three influence classes: Minor (degree ≤ 5), Medium (5 < degree ≤ 7) and Major (degree 
≥ 8). For each class of influence, the following quantities are reported: number of simulated graphs (N), means and 
standard deviations of AUC, Precision, Recall, Correlation between missing actor inferred vector of means and 
original latent vector, and running times in seconds. AUC measures the retrieval of the dependence structure between 
all variables (observed and missing), whereas precision and recall are specific to the missing actor links

N AUC Precision Recall Correlation Time (s)

Major 100 0.98 (0.06) 0.96 (0.14) 0.94 (0.17) 0.83 (0.10) 2.36 (0.91)

Medium 132 0.93 (0.12) 0.83 (0.26) 0.81 (0.30) 0.73 (0.17) 2.69 (1.15)

Minor 68 0.89 (0.10) 0.61 (0.34) 0.66 (0.36) 0.59 (0.21) 3.08 (1.14)

T A B L E  2  Oracle procedure using true clique as starting point. The influence of the missing actor is measured 
with its degree, distinguishing three influence classes: Minor (degree ≤ 5), Medium (5 < degree ≤7) and Major 
(degree ≥ 8). For each class of influence, the following quantities are reported: number of simulated graphs (N), 
means and standard deviations of AUC, Precision, Recall, Correlation between missing actor inferred vector of means 
and original latent vector, and running times in seconds. AUC measures the retrieval of the dependence structure 
between all variables (observed and missing), whereas precision and recall are specific to the missing actor links

N AUC Precision Recall Cor. t(s)

Major 100 1 (0.00) 1 (0.00) 1 (0.01) 0.86 (0.02) 1.28 (0.21)

Medium 132 1 (0.02) 1 (0.00) 0.99 (0.04) 0.83 (0.02) 1.38 (0.46)

Minor 68 0.98 (0.04) 0.99 (0.03) 0.96 (0.12) 0.8 (0.04) 1.56 (0.69)
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clear deterioration of all performance as the influence decreases with lower means are greater devi-
ations, down to about 0.6 mean values for all measures when the influence is minor. Moreover, the 
algorithm takes more and more time to converge as the influence decreases, although it stays at about 
3s for minor cases which is reasonable. Figure 4 shows that as the influence decreases, the densities 
present with several modes and dilute towards 0, illustrating that even if some networks are still well- 
inferred, there also are more and more cases where the algorithm fails. In particular, the performance 
decrease of medium cases seems to be only due to a greater number of failed inferences.

All these elements point to minor cases being harder problems to solve, unsurprisingly. Yet as 
oracle results show in Table 2, it is possible to carry out almost- perfect inference in all cases, if the 
algorithm is initialised with the true clique; the deterioration is still present in all measures, but stays 
marginal. Thus the harsh decrease in the blind procedures seems to be mainly due to the proposed 
initialisation method failing at correctly finding some of the small cliques of neighbours.

About intialisation. Figure 5 compares the initialisation quality and the corresponding final in-
ferred neighbours, in terms of initial (- i) and final (- f) false negative (FNR, also 1- TPR) and positive 
rates (FPR). It clearly appears that final measures mostly increase with false negatives of the initial 
clique. This means that not including a neighbour in the initialisation is much worse for the inference 
than falsely including a node. The increase of FNR- f is bigger than that of FPR- f, meaning that a 
wrong initialisation leads to a set of inferred neighbours which most part can be trusted, but which 
will be largely incomplete. This advocates for bigger initialisation cliques when no prior information 
is available.

F I G U R E  5  Comparison of initial and final FPR and FNR, for cliques of neighbours of one missing actor 
obtained with the sparse PCA method. Position of dots are defined according to initial values, their color according to 
the final FPR and FNR. Sizes are proportional to the density of dots on a given position [Colour figure can be viewed 
at wileyonlinelibrary.com]
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5 |  APPLICATIONS

We now illustrate the use of the proposed model on two abundance data sets published by Fossheim 
et al. (2006) and Baran (1995), respectively. In both cases, the species abundance data are accom-
panied with environmental covariates describing each site. The importance of accounting for envi-
ronmental effects to better understand the dependency structure between species has been widely 
discussed in the literature about general joint species distribution models (see, e.g. Popovic et al., 
2018, 2019; Warton et al., 2015) and, more specifically for the PLN model (see Chiquet et al., 2018, 
2019). One aim of the present section is to assess the ability of the missing actor to reveal some un-
known underlying effect. To this aim, we chose to keep the available covariate aside (that is: we did 
not include them in the model) to, then, compare the inferred missing actor with them.

5.1 | Cross- validation criterion for model selection

The proposed model obviously raises the problem of choosing the number of missing actors r (which 
may be zero). Variational- based inference often relies on approximate versions of the BIC or ICL cri-
teria for model selection. Few theoretical guaranties exist about these approximate criteria and, in the 
present case, we observed that BIC and ICL penalisations did not yield consistent results. Therefore, 
we resort to V- fold cross- validation to determine the number of missing actors.

More specifically, we split the original data set Y (X is dropped here for the sake of clarity) into V 
subsets with almost equal sizes m1, …mV (

∑
V
v=1

mv = n), which we denote {Y
v}v=1, … V. For each sub-

set v, we define its complement Y − v on which we fit a model with r missing actors and get a parameter 
estimate Γ− v

r
= (�− v

r
,� − v

r
, � − v

r
,�− v

r
) and measure the fit of Γ− v

r
 to the test data set Yv.

To avoid the integration over the (p + r)- dimensional Gaussian latent layer, we measure the fit 
with the pairwise composite likelihood (PCL: Lindsay, 1988). For any given tree T and parameter Γ, 
the bivariate Poisson log- normal pdf pPLN

(
(Yij, Yik);Γ, T

)
 can be easily computed for any sample i 

and pair of species (j, k) with available tools such as the poilog R package (Vidar & Steinar, 2008) 
available on CRAN, which resorts to a two- dimensional numerical integration. The cross- validation 
criterion is defined as 

where the tree samples {T−v
r,b
}b=1…B are iid according to p�−v

r
(T).

The sampling procedure for spanning trees is given in Appendix D.1; the complete procedure for 
the calculation of PCLr(Y) is described by Algorithm 1, given in Appendix D. Note that this criterion 
measures the fit of the model in terms of abundance prediction, whereas our interest is mostly focused 
on the inference of the dependency structure. In other words, our goal is identification that is selecting 
the smallest model and not the best model in terms of prediction (Arlot & Celisse, 2010).

We did not include this computationally greedy procedure in the complete simulation study, but 
tested it on a reduced number of data sets as described in Appendix D.2. The results suggest that this 
procedure is conservative, meaning that it has a higher probability of not detecting a missing actor 
when r = 0 (true negative) than of detecting one when r = 1 (true positive).

We then applied it to the two ecological data sets that will be described in the next two sections. 
Figure 6 shows the computed PCLr criterion on a grid of r values from 0 to 2. Selecting the maximal 

PCLr(Y) =
1

V

∑
v

1

B

B∑
b= 1

1

mv

mv∑
i= 1

∑
j< k

logpPLN

(
(Yv

ij
, Yv

ik
);Γ− v

r
, T − v

r,b

)
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F I G U R E  6  Pairwise composite likelihoods estimates of Barents and Fatala data sets for models including 0 to 3 
missing actors

F I G U R E  7  Top left: adjacency matrix of the Barents Sea fishes interaction network for r = 0 missing actor. 
The inferred neighbours are gathered in the last 6 columns, so that their interactions are observable in the upper- right 
corner. Top right: adjacency matrix for r = 1 missing actor. The last column gathers the interactions of the inferred 
missing actor. Bottom: Inferred interaction network with r = 0 (left) and r = 1 (right). Coloured nodes refer to the 
inferred neighbours (blue) of the missing actor (yellow). The width of the edges is proportional to their probability P

kl
 

[Colour figure can be viewed at wileyonlinelibrary.com]
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PCLr value yields r = 1 missing actor for the Barents Sea data set, and r = 2 missing actors for the 
Fatala River one.

Regarding the initialisation, we performed a wider exploration as compared to the simulation study. 
To enlarge the list of possible cliques, we applied a resampling version of the procedure described 
in Section 3.3, and applied it to 200 subsamples, each consisting in 80% of the whole data set. This 
yielded 200 lists of r initial cliques, from which duplicates were removed.

5.2 | Barents Sea

The data set was first published by Fossheim et al. (2006) and consists of the abundance of 30 fish spe-
cies measured in 89 sites in the Barents See in April- May 1997. In addition to abundances, the water 
temperature was measured in each site. The complete data set is available at www.fbbva.es/micro site/
multi varia te- stati stics/ data.html. Fishes distributions are known to be greatly linked with the tempera-
ture. As explained above, we present the results of the model fitted without any covariate (that is not 
accounting for the temperature), but including one missing actor (as suggested by Figure 6). To assess 
the ability of the proposed methodology to retrieve the influence of temperature as a missing actor, 
we report the empirical correlation between the temperature and the conditional expectation of the 
missing actor Mh, which we denote ρ(H, temp).

The resampling initialisation procedure yielded in 14 different cliques, for each of which a VEM 
algorithm was run: the mean running time was 6.63mins with deviation 0.70 mins.

The edge probabilities involving node h as an endpoint were either very close to 0 or very close to 1, 
yielding a total of 6 highly probable neighbours of h. Figure 7 shows that many direct interactions are 
inferred between the corresponding six species in absence of a missing actor, which vanish when it is 
introduced. It also shows that accounting for this actor has only a local effect and that the direct inter-
actions among the other species are preserved, which is consistent with our notion of a missing actor.

F I G U R E  8  Missing actor estimated vector of means M
h
 as a function of the temperature. ρ(H,temp) = 0.85 

[Colour figure can be viewed at wileyonlinelibrary.com]
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In terms of interpretation, Figure 8 shows that the missing actor is highly correlated with the tem-
perature. It also appears that the abundances of the species neighbour to the missing actor are much 
more correlated with the temperature (mean correlation = 0.78, sd = .06) than the abundances of the 
non- neighbour species (mean correlation = 0.46, sd = .27). This example shows the ability of the 
method to recover an underlying effect that would not be recorded in the data.

5.3 | Fatala River

Baran (1995) collected the abundances of 33 fish species in 90 sites along the Fatala River in Guinea 
between June 1993 and February 1994. The data are available from the R package ade4 on CRAN 
(Dray & Dufour, 2007), along with the date and site of collection, from which we deduce the season 
(dry or rainy). Again the model was fitted without any covariates, but with two missing actors, as 
suggested by Figure 6.

The resampling initialisation procedure yielded in 60 different cliques, for each of which a VEM 
algorithm was run: the mean running time was 11.33 min (sd = 1.47 mn). 14 VEM did not reach 
convergence (with tolerance ɛ = 1e − 3) after 100 iterations. We filtered out the results obtained 
from the different initialisations, when the algorithm obviously ended in a degenerate solution 
(� (Mh) < exp( − 20)).

Figure 9 shows the scatterplot of the estimated conditional mean of the two missing actors 
(Mh1

, Mh2
) in each site, coloured with either one of the available covariates (site and season). The 

F I G U R E  9  Estimated means M
h1

 and M
h2

 of the two inferred missing actors. Left column: scatterplots M
h1

 vs M
h2

 
with site (top) and season (bottom) colour code. Right: distribution of the estimated means across sites. Top right: 
distribution of M

h1
 in each location, bottom right: distribution of M

h2
 in each season [Colour figure can be viewed at 

wileyonlinelibrary.com]
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missing actor h1 is obviously linked to the site and separates most upstream locations (kilometre 3) 
from most downstream locations (kilometre 46). This actor has 11 highly probable neighbour species. 
Again, this retrieved missing actor corresponds to an underlying effect (in this case: geography) that 
rules fish species abundances.

The second missing actor seems to be linked with the season but with a less clear separation. 
Also the variability of Mh2

 is much smaller than this of Mh1
. This effect is therefore questionable, 

which brings us back to model selection. As mentioned above, we used a procedure based on cross- 
validation, which may be prone to select too complex model (Arlot & Celisse, 2010; Friedman et al., 
2001; Shao, 1993). The definition of a grounded model selection criterion for structure inference in 
presence of missing actors remains open.

6 |  DISCUSSION

We introduced a novel approach for network inference for count data, including missing actors. 
Although several methods have been previously proposed for network inference, this is, to our 
knowledge, the first both to deal with count data and to account for a missing actor. The proposed 
model is similar to Poisson log- normal, where the latent layer is enriched with few missing variables 
each corresponding to an unrecorded actor of the network. To manage complex hidden structure of 
the model, the inference strategy resorts to a variational approximation of the likelihood. We demon-
strated the interest of this approach to detect underlying drivers of species abundances in community 
ecology.

Although variational approximations have been proven to be accurate in terms of parameter esti-
mation for many models, they may raise problems in terms of model selection. In the present context, 
model selection is needed to chose the number of missing actors (which can be zero). A common— 
and heuristic— approach consists in applying some standard penalisation (such as BIC or ICL), orig-
inally derived for the log- likelihood, to the variational lower- bound itself. This turned out to fail for 
the present model, so we proposed a heuristic criterion based on cross- validation, which provides 
satisfying results, but is time consuming. The problem of defining general model selection criteria 
consistent with variational approximations remains open at this time.

The proposed approach aims at inferring the latent network that is the structure of the graphical 
model of the latent variable (including missing actors). This graphical model does not necessarily 
coincide with this of the observed variables, which is a limitation of all network inference methods 
relying on a latent layer. Still, the Gaussian framework remains predominant (because reasonably 
manageable) when accounting for the existence of missing actors. This explains why we opted for 
the Poisson log- normal model. A generic framework for network inference in the observed layer with 
missing actors for counts or, more generally, for non- Gaussian data remains to be defined.
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APPENDIX A

ALGEBRAIC TOOLS
We here present some algebraic results about spanning tree structures which are used during the 
computations. Theorem 1, Lemma 1 as well as Lemma 2 use the notion of Laplacian matrix Q of a 
symmetric matrix W = [wjk]1≤j,k≤p, which is defined as follows: 

We further denote Wuv the matrix W deprived from its uth row and vth column and we remind that 
the (u, v)- minor of W is the determinant of this deprived matrix, that is |Wuv |. The following Theorem 
1 is the extension of Kirchhoff’s Theorem to the case of weighted graphs (Chaiken & Kleitman, 1978; 
Meilă & Jaakkola, 2006).

Theorem 1 (Matrix Tree Theorem) For any symmetric weight matrix W with all positive entries, the 
sum over all spanning trees of the product of the weights of their edges is equal to any minor of 
its Laplacian. That is, for any 1 ≤ u,v ≤ p, 

In the following, without loss of generality, we will choose Q11. As an extension of this result, Meilă 
and Jaakkola (2006) provide a close form expression for the derivative of W with respect to each entry 
of W.

Lemma 1 (Meilă and Jaakkola (2006)) Define the entries of the symmetric matrix M as 

it then holds that 

Kirshner (2008) build on Lemma 1 to provide an efficient computation of all edges probabilities.

Lemma 2 (Kirshner (2008)) Let pW be a distribution on the space of spanning trees, such that 
pW (T) =

∏
kl∈Twkl∕W, where W is defined as in Theorem 1. Taking the symmetric matrix M as 

defined in Lemma 1, the probability for an edge kl to be in the tree T ∗ writes: 

[Q]jk =

⎧
⎪⎨⎪⎩

−wjk 1≤ j< k≤p
p�

u= 1

wju 1≤ j= k≤p.

W: =
∑

T ∈�

∏
(j,k)∈T

wjk = |Quv | .

[M]jk =

⎧⎪⎨⎪⎩

�
(Q11)−1

�
jj
+
�
(Q11)−1

�
kk
−2

�
(Q11)−1

�
jk

1< j< k≤p�
(Q11)−1

�
jj

k=1, 1< j≤p

0 j= k.

�wjk
W = [M]jk × W.
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APPENDIX B

COMPUTATIONS
B.1 Update of β
As in Momal et al. (2020), the update of β is such that: 

 By definition of p�(T): 

 Computing the derivative with respect to the edge weight �kl gives: 

 According to Lemma 1: ��kl
Bt = [M]kl × B. Finally setting the derivative to 0 yields the update formula 

� t+1
kl

=
Pt

kl

M(� t)kl

.

B.2 Update of ΩT

The update of �T respects 

 This is a problem of parameter optimisation in the context of Gaussian graphical models (GGM). In what 
follows, for any q × q matrix A, A[kl] will refer to the bloc kl of A: A[kl] = (aij){i,j}∈{k,l}. [A[kl]]

q will then 
denote the matrix obtained by filling up with zero entries to obtain full dimension q × q, so that: 

 In its proposition 5.9, Lauritzen (1996) states that in a GGM with p variables and associated with the de-
composable graph �, the maximum likelihood of the precision matrix exists if and only if n > maxC∈� |C |.   
It is then given as 

ℙ{kl ∈ T ∗ } =
∑

T ∈�

pW (T) = wklMkl

� t+1 = arg max
�

�gt

[
logp�(T)

]
.

�gt

[
logp�(T)

]
=

∑
kl

Pt
kl

log�kl − logB , B =
∑

T ∈�

∏
kl∈T

�kl.

��kl
�gt

[
logp�(T)

]
=

Pt
kl

�kl

−
��kl

Bt

Bt

�
t+1 = arg max

�

�qt

[
logp

�
(U|T)

]
.

([A[kl]]
q)ij =

{
aij if {i, j}∈{k, l}

0 if {i, j}∈{1, …, q}�kl

�̂ = n

(∑
C∈�

[SSD−1
[C]

]p −
∑
S∈�

�(S)[SSD−1
[S]

]p

)
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where � is the set of cliques and � the set of separators of �, with associated multiplicities ν(S).
In our context, � is a spanning tree and so all cliques are edges and separators are nodes. The 

multiplicity of a given node k as a separator in the graph is ν(k) = d(k) − 1, where d(k) is its degree. 
Therefore the estimator �̂T writes as the following 

 As SSD has diagonal n, the expression simplifies. Denoting Id the identity matrix of dimension d we 
obtain: 

Detailing each bloc matrices as follows gives the update formulas in (10): 

B.3. Determinant of �T

The determinant of a precision matrix of a GGM with a decomposable graph is expressed as follows 
(Lauritzen, 1996): 

where Σ = Ω−1. As �T is tree- structured, its determinant factorises on the edges of T. It is expressed with 
the correlation matrix RT as follows: 

 Using that RT has diagonal 1, we obtain for step t + 1 of the algorithm: 

�̂T=n
∑
kl∈T

[(SSD[kl])
−1]p+r −n

∑
k

(d(k)−1)[(SSDkk)−1]p+r

=n
∑
kl∈T

[(SSD[kl])
−1− (SSDkk)−1− (SSDll)

−1]p+r +n
∑

k

[(SSDkk)−1]p+r

�̂T = n
∑
kl∈T

[(SSD[kl])
−1 −

1

n
I2]p+ r + Ip+r.

n × [(SSD[kl])
−1 −

1

n
I2] =

1

1 − (ssdkl∕n)2

(
(ssdkl∕n)2 −ssdkl∕n

−ssdkl∕n (ssdkl∕n)2

)

�Ω � =
∏

C∈� �ΣC � −1

∏
S∈� �ΣS � − �(S)

,

��T � =
∏

kl∈T �RTkl � −1

∏
k �RTkk �1−d(k)

|�t+1
T

| =
(∏

kl∈T

|Rt+1
T[kl]

|
)−1

.
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B.4. Numerical issues

B.4.1 Exact computations

Our algorithm requires the computation of determinants (from the Matrix Tree Theorem) and inverses 
(in Kirshner’s formula) of Laplacian of weight matrices. As we deal with highly variable weights, 
numerical issues arise: infinite determinants or matrix numerically non- invertible due to either the 
maximal machine precision (about 1.7 ⋅ 10308), or with machine zero (about 2.2 ⋅ 10−16). To enhance 
the precision of such computations, we rely on multiple- precision arithmetic which allows the digit of 
precision of numbers to be limited only by the available memory instead of 64 bits. We implemented 
matrix inversion and log- determinant computation using both, symbolic computation and multiple 
precision arithmetic, relying on the gmp R package, which uses (Lucas et al., 2020), the C library 
GMP (GNU Multiple Precision Arithmetic).

B.4.2 Tempering parameter α
Moreover, weights �̃ are mechanically linked to the quantity of data available n. To avoid reaching 
maximal precision when computing the determinant, a tempering parameter α is applied to every 
quantity proportional to n, so that the actual update performed is 

 We provide hereafter a heuristic to set the parameter α. The proposed algorithm requires the computation 
of the normalising constant B̃, which is the determinant of any minor of the Laplacian of the q × q varia-
tional weights matrix �̃. As these weights mechanically increase with the quantity of available data n, this 
step is numerically very sensitive. Hereafter we denote |Quv | this determinant and Δ the maximal machine 
precision. In order to ease the computations, we define the tempering parameter α as 

Let us first detail the expression for �̃kl. Following the definition of the SSD matrix, and update 
formulas (10) and (11), we obtain: 

 For large n, we thus have 

 We then denote ssdmax = max{ssdkl∕n, k ≠ l}. By definition, Quv is positive- definite, so its determinant is 
upper bounded by the product of its diagonal terms (Hadamard’s inequality). Namely: 

log�̃kl = log�kl − �(
n

2
log | R̂Tkl | + �̂Tkl[M

⊺M]kl).

log�̃kl = log�kl − �(
n

2
log | R̂Tkl | + �̂Tkl[M

⊺M]kl) , under constraint |Quv | ≤ Δ.

log�̃kl = log�kl + �n

{
(ssdkl∕n)2

1 − (ssdkl∕n)2
−

1

2
log[1 − (ssdkl∕n)2]

}

�̃kl ≈ exp[�n ⋅ f (ssdkl∕n)], with f (x) = x∕(1 − x) − log(
√

1 − x), x ∈ [0, 1].

|Quv|≤
q− 1∏
i= 1

Q
uv
ii
≤

q− 1∏
i= 1

q− 1∑
i= 1

exp(�nf (ssdmax)

≤
[
(q−1)exp(�nf (ssdmax))

]q−1
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 Then applying the constraint yields: 

With ssdmax = 0.8, n = 200 and q = 15, we get � ≤ 1.05 ⋅ 10−1.

|Quv | ≤ Δ⟺ � ≤
1

nf (ssdmax)

[
1

q − 1
logΔ− log(q − 1)

]

F I G U R E  1 0  Descriptive elements on 400 count Data sets simulated following the protocol of section 1. Top: 
mean- variance relationship. Bottom: distribution of the data sets respective maximal value; the mean value is about 470
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APPENDIX C

SIMULATED COUNTS DESCRIPTION
Figure 10 gives descriptive details on typical count data sets simulated according to the Poisson 
log- normal model, as detailed in section 4.1. It shows the varying ranges of the resulting counts and 
illustrates their clear over- dispersion compared to the Poisson law.

APPENDIX D

MODEL SELECTION AND CROSS- VALIDATION
D.1 Sampling spanning trees

Sampling non- uniform spanning trees (i.e. sampling T from p�) is a research topic by itself, especially 
for large networks (see Durfee et al., 2017, for a review). For moderate size networks, a rejection 
algorithm (Devroye, 1986) can be defined in the following way:

1. Sample T from a distribution q, such that there exist a constant M, that ensures that, for all 
T, Mq(T) > p�(T);

2. Keep T with probability M−1p�(T)∕q(T) or try step 1 again.

The efficiency of such an algorithm strongly relies on the choice of the proposal distribution. Here 
we adopt the following proposal:

1. Sample a connected graph G with independent edges, each drawn with probability 
Qjk ∝ Pjk = Pr�{jk ∈ T};

2. Sample T uniformly among the spanning trees of G.

Evaluation of the proposal. To evaluate the proposal distribution for each sampled tree, we may ob-
serve that, the probability for a graph drawn from the proposal to contain a given tree T is approximately 

the approximation being due to the connectivity constraint. This constraint can be almost surely satisfied 
by taking Qjk’s large enough. So, denoting |�(G) | the number of spanning trees in G, we have that 

 The last expectation can be evaluated via Monte Carlo, by sampling a series of graphs G according to the 
proposal q but forcing all edges from T to be part of G.

Upper bounding constant M. To evaluate the upper bounding constant M, we may observe that 
finding the tree T ∗ such that 

Prq{G ∋ T} ≈
∏
jk∈T

Qjk,

q(T) =
∑
G∋T

q(T |G)q(G) =
∑
G∋T

q(G)

|�(G) | = Prq{G ∋ T} �
(|�(G)|−1|G ∋ T

)
.

m� : =
Prq{G ∋ T ∗ }

p�(T ∗ )
= min

T ∈�

Prq{G ∋ T}

p�(T)
= min

T ∈�

∏
jk∈T

Qjk

� jk
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is a minimum spanning tree problem. Then, obviously, for any tree T: Prq{G ∋ T} ≥ m�p�(T). Now, 
because the maximum number of spanning trees within a graph is pp−2, we have 

 So we may set M = pp−2∕m�. Still, in practice, this bounds turns out to be far too large and needs to be 
tuned down to preserve computational efficiency.

D.2 Cross- validation for model selection

We conducted a simulation study to assess the performances of the cross- validation procedure de-
scribed in Section 5.1. We simulated data sets as described in Section 4, with p=14 species and 
n = 200 observations. 30 data sets were simulated with r = 0 and another 30 with r = 1. Figure 11 
shows that when no actor was missing (r = 0), the proposed criterion gave the right result for 87% of 
data sets. When one actor was missing (r = 1), the criterion gave the right result for 50% of the data 
sets. This suggests that using the proposed cross- validated PCL criterion is conservative.

Mq(T) = M
∑
G∋T

q(G)

|�(G) | ≥
M

pp−2

∑
G∋T

q(G) =
M

pp−2
Prq{G ∋ T} ≥ M

m�

pp−2
p�(T)

F I G U R E  1 1  Model selection simulation results using the cross- validation procedure described in Section 1. 
Simulated data sets involve n = 200 samples of p = 14 species, and r = 0 or r = 1 missing actor (30 data sets in each 
category)
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