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1  | INTRODUC TION

There is a growing awareness of biotic interactions being crucial 
components of biodiversity and relevant descriptors of ecosystems 
(Jordano, 2016; Valiente-Banuet et al., 2015). Such interactions can 
be conveniently represented by networks, which have been increas-
ingly studied and used in recent years for describing and under-
standing living systems in ecology (Poisot, Stouffer, & Kéfi, 2016), 
microbiology (Faust & Raes, 2012) or genomics (Evans, Kitson, Lunt, 
Straw, & Pocock, 2016). Observing species interactions is a labo-
rious task which restricts them to certain categories (e.g. pollina-
tion, predation, parasitism), while many other types of interactions 
may be hard to observe and key in the system organization (e.g. 
communication, shelter sharing). Many efforts have been devoted 
in the last decade to get a more complete picture of the biotic in-
teractions existing between species living in the same niche: all 

these interactions can be gathered in a so-called species interaction 
network.

Network reconstruction. A first attempt consists in using ob-
served interactions to predict other possible links based on spe-
cies traits matching (see e.g. Bartomeus et al., 2016; Graham & 
Weinstein, 2018; Olito & Fox, 2015; Weinstein & Graham, 2017). 
The interaction strength can also be predicted (Wells & O'Hara, 
2013). This can be viewed as a prediction task, and modern ap-
proaches arising from signal processing and machine learning have 
been also proposed (Dallas, Park, & Drake, 2017; Desjardins-Proulx, 
Laigle, Poisot, & Gravel, 2017; Stock, Poisot, Waegeman, & Baets, 
2017). We name these approaches network reconstruction to distin-
guish them from network inference, which is the problem we con-
sider in this article.

Network inference. Network inference approaches also aim at re-
trieving the interactions among species, but do not rely on observed 
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interactions and therefore, remain agnostic as for their type. Such 
approaches have been developed in many domains ranging from 
cell biology (Friedman, 2004, to infer gene regulatory networks) to 
neurosciences (Zhu & Cribben, 2018, to decipher brain connectiv-
ity structures). In ecology, it will typically aim at inferring the set of 
biotic interactions linking species from the same guild. As summa-
rized in Figure 1, network inference takes input measures on species 
(here abundances) at similar sites, and returns a network of direct 
interactions between species. The importance of distinguishing be-
tween direct interaction and indirect association between species 
is explained in Popovic, Warton, Thomson, Hui, and Moles (2019).

Species not engaged in biotic interactions can appear linked if 
they respond similarly or oppositely to an abiotic effect (spurious 
interaction). Therefore network inference must account for en-
vironmental covariates. Figure 2 illustrates this phenomenon: in  
(c) species (1 and 4) are not in direct interaction, but are affected 
by the variations of the same environmental covariate x. (d) displays 
the network when x is not accounted for: a spurious edge appears 
between species.

Joint species distribution models. The rationale behind network in-
ference is that interactions between species must affect their joint 
distribution in a series of similar sites. Such approaches necessar-
ily rely on a joint species distribution model (JSDM), as opposed to 
species distribution models (Elith & Leathwick, 2009) where species 
are traditionally considered as disconnected entities. A JSDM is a 
probabilistic model describing the species’ simultaneous presence/
absence (Harris, 2015; Ovaskainen et al., 2017) or joint abundances 
(Popovic, Hui, & Warton, 2018; Popovic et al., 2019). An important 
feature of JSDMs is to include environmental covariates to account 
for abiotic interactions.

Recently, latent variable models have received attention in 
community ecology as they provide a convenient way to model the 
dependence structure between species (Warton et al., 2015). The 
JSDM proposed by Popovic et al. (2018, 2019) involves a latent layer. 

So does the Poisson log-normal model (PLN; Aitchison & Ho, 1989), 
which combines generalized linear models to account for covariates 
and offsets, and a Gaussian latent structure to describe the species 
interactions. It can be seen as a multivariate mixed model, in which 
correlated random effects encode the dependency between the 
species abundances.

In (b), the network is disconnected: species 4 is independent 
from all others. This illustrates that graphical models enjoy all the 
desirable properties to represent interactions between species 
in an interpretable manner, so that they can be used as the math-
ematical counterpart of species interaction networks. Graphical 
models: a generic framework for network inference. Although 
they describe the dependence structure between the distribu-
tions of all the species from a same niche, JSDM are not suffi-
cient to perform network inference as they do not distinguish 
indirect associations from direct interactions (Dormann et al., 
2018). Graphical models (Lauritzen, 1996) provide a probabilistic 
framework to do so and, in the same time, a formal definition 
of the network to be inferred. This formalism is therefore espe-
cially appealing for the inference of species interaction networks 
(Popovic et al., 2019). In a undirected graphical model (which is the 
same as a Markov random field: Clark, Wells, & Lindberg, 2018), 
two species are connected if they are dependent conditional 
on all other species, that is if the variations of their respective 
abundances would still be correlated if ever both the environ-
mental conditions and the abundances of all other species were 
kept fixed. Two species are unconnected if they are independent 
conditional on all other species: the observed correlation be-
tween them only results from a series of links with other species 
(Morueta-Holme et al., 2016) or environmental effects. Figure 2 
illustrates the concept of conditional dependence/independence 
with toy graphical models. In (a), the network is connected so all 
species are interdependent: an association exists between any 
two of them. However, 1 is only directly interacting with 2 which 

F I G U R E  1   Aim of species interaction 
network inference from abundance data. 
Data sample from the Fatala river dataset 
(see Section 2.3.4)(a) (b) (c)

F I G U R E  2   Examples of graphical models. (a) All species are dependent, (b) 4 is independent from all others, (c) 1 and 4 are independent 
conditional on x, (d) not accounting for x induces a spurious dependence between 1 and 4

(a) (b) (c) (d)
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mediates its association with 3 and 4:1 is independent from them 
conditional on 2.

In (b), the network is disconnected: species 4 is independent 
from all others. This illustrates that graphical models enjoy all the 
desirable properties to represent interactions between species in an 
interpretable manner, so that they can be used as the mathematical 
counterpart of species interaction networks.

Network inference: The general problem. Network inference 
methods attempt to retrieve the graphical model underlying the 
distribution of abundance data. In every domain, network inference 
is impeded by the huge number of possible graphs for a given set 
of nodes, which increases super-exponentially with the latter (more 
than 1013 undirected graphs can be drawn between 10 nodes, and 
more than 1057 between 20). The exploration of the graph space 
is therefore intractable from a combinatorial point of view. To re-
duce the search space, a common and reasonable assumption is 
that a relatively small fraction of species pairs is in direct interac-
tion: the network is sparse. In the case of continuous observations, 
one of the most popular approaches is the graphical lasso (glasso: 
Friedman, Hastie, & Tibshirani, 2008), which takes advantage of the 
properties of Gaussian graphical models (GGM) to efficiently infer 
a sparse network. Alternatively, tree-based approaches have been 
proposed: Chow and Liu (1968) first made the too stringent as-
sumption that the network is made of a single spanning tree (that is 
connecting all nodes without any loop, as in Figure 3). More recent 
approaches introduced by Meilă and Jaakkola (2006) and Kirshner 
(2008) rely on efficient algebraic tools to average over all possible 
tree-structured graphical models. The inferred network resulting 
from such an averaging procedure is not restricted to be a tree: spe-
cies or groups of species can be isolated (e.g. Figure 1), and loops 
can appear (e.g. Figure 3).

Network inference from species abundance data. This work focuses 
on network inference based on abundance data, and not only their 
presence/absence (as considered in Clark et al., 2018; Ovaskainen, 
Hottola, & Siitonen, 2010). Network inference from species abun-
dance measures is a notoriously difficult problem (Ulrich & Gotelli, 
2010), not only because network inference is complex, but also be-
cause it has to account for the data specificities. Abundance data 
may spread over a wide range of values and often result from sam-
pling efforts (sample and/or species-specific), making them difficult 

to compare. Obviously, count data do not directly fit the Gaussian 
framework but many network inference methods dedicated to 
abundance data actually rely on a latent Gaussian structure (see 
Section 2.3.1).

Contribution. In the present work, we adopt a model-based ap-
proach to perform network inference from abundance data. To 
accommodate the data specificities, we use a PLN model, which 
includes the over-dispersion of the observed counts as well as the 
sampling effort. Importantly, the PLN model allows us to account 
for abiotic effects and avoid the detection of spurious interactions 
between species.

As for the network inference, we adopt a tree-based approach 
(as opposed to Biswas, McDonald, Lundberg, Dangl, & Jojic, 2016, 
which also uses a PLN model but resort to glasso), which provides a 
probability for each edge to be actually part of the underlying graph-
ical model.

Outline. We introduce the method EMtree, which combines two 
(variational) expectation-maximization (EM) algorithms to estimate the 
model parameters. Importantly, our approach provides the probabil-
ity for each possible edge to be part of the interaction network. We 
evaluate our approach on both synthetic and ecological datasets. An 
r package implementing EMtree is available on GitHub https://github.
com/Rmoma l/EMtree (https://doi.org/10.5281/zenodo.3660627).

2  | MATERIAL S AND METHODS

2.1 | Model

Let us first describe the typical type of data we consider. We as-
sume that p species have been observed in n sites. The abundances 
are gathered in the n × p matrix Y. Yij is the abundance of species j 
in site i, and Yi the abundance vector collected in site i (ith row of 
Y). We further assume that a vector of covariates xi of size d has 
been measured in each site i and that all covariates are gathered in 
the n × d matrix X. The sites are supposed to be independent. Our 
aim is to decipher the dependency structure between the p species, 
accounting for the effect of the environmental covariates encoded 
in X. As explained above, ignoring environmental covariates is more 
than likely to result in spurious edges.

F I G U R E  3   Tree averaging principle. 
Top: 5 spanning trees with 4 nodes 
(t1, …, t5), with their respective conditional 
probability given the data P(T = t|Y). 
Bottom left: Weighted graph resulting 
from tree averaging. Each edge has width 
proportional to its conditional probability. 
Bottom right: Estimated graph (obtained 
by thresholding edge probabilities) is not 
a tree

https://github.com/Rmomal/EMtree
https://github.com/Rmomal/EMtree
https://doi.org/10.5281/zenodo.3660627
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Mixed model. To distinguish between covariates effects and spe-
cies interactions, we consider a mixed model which states that each 
abundance Yij has a (conditional) Poisson distribution

In model (1), oij is the sample- and species-specific offset which ac-
counts for the sampling effort. �j is the vector of fixed regression coef-
ficients measuring the effect of each covariate on species j abundance. 
The regression part is similar to a general linear model as used in niche 
modelling (see e.g. Austin, 2007). Zij is the random effect associated 
with species j in site i. Importantly, the coordinates of the site-specific 
random vector Zi = (Zi1, … ,Zip) are not independent: the multivariate 
random term Zi precisely accounts for the interactions that are not due 
to environmental fluctuations. For each site i, a vector Zi is associated 
with the corresponding abundance vector Yi. The distribution given in 
Equation 1 is over-dispersed as the Poisson parameter is itself random, 
which suits ecological modelling of abundance data (Richards, 2008).

We now describe the distribution of the latent vector Zi. To this 
aim, we adopt a version of Kirshner's model (Kirshner, 2008), which 
states that a spanning tree T is first drawn with probability

where (j, k) ∈ T means that the edge connecting species j and k is part 
of the tree T and where B is a normalizing constant. Each edge weight 
βjk controls the probability for the edge ( j, k) to be in the interaction 
network.

Then for each site i, a vector Zi is drawn independently with con-
ditional Gaussian distribution (Zi∣T) ∼  (0,ΣT), where the subscript T 
means that the distribution of Zi is faithful to T. When T is a spanning 
tree, this faithfulness simply means this distribution can be factor-
ized on the nodes and edges of T as follows (see Kirshner, 2008):

where �jk(Zi) does not depend on T. This factorization means that each 
edge of T corresponds to a species pair in direct interaction; all other 
pairs are conditionally independent. Experiments are independent, 
and in the sequel we consider the product of all p(Zi) and use the sim-
pler notation �jk =

∏
i

�jk(Zi) instead.
According to Equation 2, each Zi has a Gaussian distribution 

conditional on the tree T, so its marginal distribution is a mixture of 
Gaussians: Zi ∼

∑
T∈ 

p(T) (0,ΣT), where   is the set of all spanning 
trees. As a consequence, the joint distribution of the Zi is modelled by 
a mixture of distributions with tree-shaped dependency structure.

Besides, for all trees including the edge ( j, k), the estimate of the 
covariance term between the coordinates j and k is the same (see 
Lauritzen, 1996; Schwaller, Robin, & Stumpf, 2019). Hence, we may 
define a global covariance matrix �, filled with covariances that are 
each common to spanning trees containing a same edge. Each �T is 

then built by extracting from � the covariances corresponding to the 
edges of T.

2.2 | Inference with EMtree

We now describe how to infer the model parameters. We gather the 
edge weights into the p × p matrix � and the vectors of regression 
coefficients into a d × p matrix �. The p × p matrix � contains the 
variances and covariances between the coordinates of each latent 
vector Zi. Hence, the set of parameters to be inferred is (� ,�,�).

Likelihood. The model described above is an incomplete data 
model, as it involves two hidden layers: the random tree T and the 
latent Gaussian vectors Zi. The most classical approach to achieve 
maximum likelihood inference in this context is to use the EM algo-
rithm (Dempster, Laird, & Rubin, 1977). Rather than the likelihood of 
the observed data p(Y), the EM algorithm deals with the often more 
tractable likelihood p(T,Z,Y) of the complete data (which consists of 
both the observed and the latent variables). It can be decomposed as

where the subscripts indicate on which parameter each distribution 
depends.

Observe that the dependency structure between the species is 
only involved in the first two terms, whereas the third term only de-
pends on the regression coefficients �. We take advantage of this 
decomposition to propose a two-stage estimation algorithm. The 
first stage deals with the observed layer p�(Y|Z), the second with 
the two hidden layers p� (T) and p

�
(Z|T). The network inference itself 

takes place in the second step.
Inference in the observed layer. The variational EM (VEM, Blei, 

Kucukelbir, & McAuliffe, 2017; Ormerod & Wand, 2010) algorithm 
that provides an estimate of the regression coefficients matrix � is 
described in Appendix A.1 (along with a reminder on EM and VEM). 
It also provides the (approximate) conditional means �(Zij|Yi), vari-
ances � (Zij|Yi) and covariances ℂov(Zij,Zik|Yi) required for the infer-
ence in the hidden layer (Chiquet, Mariadassou, & Robin, 2018). As a 
consequence, this first step provides the estimates �̂ and �̂.

Inference in the hidden layer. The second step is dedicated to 
the estimation of �. The EM algorithm actually deals with the 
conditional expectation of the complete log-likelihood, namely 
�
(
log p� ,�,�(T,Z,Y)|Y

)
. As shown in Appendix A.2, this reduces to

where �̂�jk is the estimate of �jk defined in Equation 3, and the ‘cst’ 
term depends on � and � but not on �. Pjk is the approximate condi-
tional probability (given the data) for the edge (j, k) to be part of the 
network: Pjk≃ℙ{(j, k) ∈ T|Y}. It is also shown in Appendix A.2 that 
�̂�jk= (1− �̂�2

jk
)−n∕2, where the estimated correlation �̂�jk depends on the 

conditional mean, variance and covariances of the Zij's provided by the 

(1)Yij∼
(
exp

(
x
⊺

i �j + oij + Zij
))

.

(2)p(T) =
∏

(j, k)∈ T

�jk∕B,

(3)p
(
Zi∣T

)
=

p∏

j=1

p
(
Zij|T

) ∏

(j, k)∈ T

�jk(Zi),

(4)p� ,�,�(T,Z,Y) = p� (T) × p
�
(Z|T) × p�(Y|Z),

(5)�
(
log p� ,�,�(T,Z,Y)|Y

)
≃

∑

1≤j<k≤p

Pjk log
(
𝛽jk�̂�jk

)
− logB + cst,
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first step. Equation 5 is maximized via an EM algorithm iterating the 
calculation of the Pjk and the maximization with respect to the βjk:

Expectation step: Computing the Pjk with tree averaging  The conditional 
probability of an edge is simply the sum of the conditional prob-
abilities of the trees that contain this edge. Hence, computing Pjk 
amounts to averaging over all spanning trees. Figure 3 illustrates 
the principle of tree averaging for a toy network with p = 4 nodes. 
Here, five arbitrary spanning trees t1 to t5 (among the pp−2=16 
spanning trees) are displayed, with their respective conditional 
probability p(T|Y). The edge (1, 3) has a high conditional probability 
P13 because it is part of likely trees such as t3 and t4, whereas P23 is 
small because the edge (2, 3) is only part of unlikely trees (e.g. t1, t2).

    Averaging over all spanning at the cost of a determinant cal-
culus (i.e. with complexity O(p3)) is possible using the Matrix Tree 
theorem (Chaiken & Kleitman, 1978, recalled as Theorem 1 in 
Appendix A.3). Kirshner (2008) further shows that all the Pjk's can 
be computed at once with the same complexity O(p3), although 
the calculation may lead to numerical instabilities for large n and p.

Maximization step: Estimating the βjk  This step is not straightfor-
ward, as the normalizing constant B =

∑
T

∏
(j, k)∈ T �jk involves 

all βjk's. We propose an exact maximization built upon the 
Matrix Tree theorem (see Appendix A.2).

Algorithm output: Edge scoring and network inference. EMtree pro-
vides the (approximate) conditional probability Pjk for each edge ( j, k) 
to be part of the network. Whenever an actual inferred network Ĝ is 
needed (e.g. for a graphical purpose), it can be obtained by thresh-
olding the Pjk (see Figure 3, bottom right). Because we are dealing 
with trees, a natural threshold is the density of a spanning tree, 
which is 2/p. More robust results can be obtained using a resampling 
procedure similar to the stability selection proposed by Liu, Roeder, 
and Wasserman (2010). It simply consists in sampling a series of sub-
samples s = 1, … , S, to get an estimate Ĝs from each of them and 
to collect the selection frequency for each edge. Again, these edge 
selection frequencies can be thresholded if needed.

2.3 | Simulation and illustrations

Because network inference is an unsupervised problem (as opposed 
to network reconstruction), we compare the accuracy of the meth-
ods described above on synthetic abundance datasets, for which the 
true underlying network is known.

2.3.1 | Alternative inference methods

We consider network inference methods dedicated to both metagen-
omics (SPIEC-EASI, gCoda and MInt) and ecology (MRFcov, ecoCop-
ula). All methods can handle count data and rely on some (implicit) 
Gaussian setting. SPIEC-EASI (Kurtz et al., 2015), gCoda (Fang, Huang, 
Zhao, & Deng, 2017) and MRFcov (Clark et al., 2018) resort to data 

transformation to fit a Gaussian framework. MInt (Biswas et al., 2016) 
considers a Poisson mixed model similar to the one we consider and 
ecoCopula (Popovic et al., 2019) defines a multivariate count distri-
bution, the dependency structure of which is encoded in a Gaussian 
copula. These methods rely on a GGM or a Gaussian copula, so that 
the network inference problem amounts to estimating a sparse ver-
sion of the inverse covariance matrix (also named precision matrix).

Edge scoring. These methods build upon glasso penalization 
(Friedman et al., 2008). For each edge, there exists a minimal pen-
alty value above which it is eliminated from the network. The higher 
this minimal penalty, the more reliable the edge in the network, so 
it can be used as a score reflecting the importance of an edge. Only 
SpiecEasi and gCoda provide unthresholded quantities (namely the 
glasso regularization path) that can be used for edge scoring; the 
other methods only return their optimal graph.

Covariates. Only MInt, MRFcov and ecoCopula may include covari-
ates. In order to draw a fair comparison, we give SPIEC-EASI and gCoda 
access to the covariate information by feeding them with residuals of 
the linear regression of the transformed data onto the covariates.

2.3.2 | Comparison criteria

False discovery rate (FDR) and density ratio criteria. Inferred networks 
are mostly useful to detect potential interactions between species, 
which then need to be studied by experts to determine their exact 
nature. Falsely including an edge leads to meaningless interpretation 
or useless validation experiments.

A network with a few reliable edges will be preferred to a one 
having more edges with a larger risk of possible false discoveries. 
Therefore we choose the FDR as an evaluation criterion, which 
should be close to 0. Comparing FDR's only makes sense for net-
works with similar densities. We then compute the ratio between 
the densities of the inferred and the true network (density ratio).

Area under the curve (AUC) criterion. The AUC criterion allows to 
evaluate the inference quality without resorting to any threshold. 
It evaluates the probability for a method to score the presence of a 
present edge higher than that of an absent one; it should be close 
to 1. Note that this criterion cannot be computed for MRFcov, eco-
Copula and MInt as they provide a unique network.

2.3.3 | Simulation design

Simulated graphs. We consider three typical graph structures: Scale-
free, Erdös (short for Erdös-Reyni) and Cluster. Scale-free struc-
ture bears the closest similarity to the tree one, with almost the 
same density and no loops; it is popular in social networks and in 
genomics as it corresponds to a preferential-attachment behaviour. 
It is simulated following the Barbási-Albert model as implemented 
in the huge r package (Zhao, Liu, Roeder, Lafferty, & Wasserman, 
2012). The degree distribution of Scale-free structure follows a 
power law, which constrains the edges probabilities such that the 
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network density cannot be controlled. Erdös structure is the most 
even as the edges all have the same existence probability. It is a 
step away from the tree as it may contain loops and its density can 
be increased arbitrarily. Cluster structure spreads edges into highly 
connected clusters, with few connections between the clusters; the 
ratio parameter controls the intra/inter connection probability ratio.

Simulated counts. The datasets are simulated under the Poisson 
mixed model described in Equation 1. We first build the covariance 
matrix ΣG associated with a graph G following Zhao et al. (2012) and 
randomly choosing the sign of the link, so that in our simulations we 
consider both positive and negative interactions. For each site i, we 
simulate Zi∼ (0,ΣG), then use these parameters together with a 
set of covariates to generate count data Y. We use three covariates 
(one continuous, one ordinal and one categorical), with their regres-
sion coefficients θ drawn from a standard uniform distribution to 
create heterogeneity in environmental response across species.

Experiments. For each set of parameters and type of structure, 
we generate 100 graphs, simulate a dataset under a heterogeneous 
environment and infer the dependency structure using EMtree, 
gCoda, SpiecEasi MInt, ecoCopula and MRFcov (the three latter only 
for Experiment 1). The settings of all methods are set to default, ex-
cept for ecoCopula for which we use the ‘AIC’ selection criterion 
(‘BIC’ gives too many empty results). All computation times are ob-
tained with a 2.5 GH Intel Core 17 processor and 8G of RAM.

Experiment 1 Effect of the data dimensions on the inferred net-
work. We compare performances in terms of FDR and den-
sity ratios on two scenarios: easy (n = 100, p = 20), and hard 
(n = 50, p = 30). The network density for Erdös and Cluster 
structures is set to log(p)/p.

Experiment 2 Effect of the network structure on edge rankings. AUC 
measures are collected for alternate variations of n and p to get 
a general idea of each performance. For comparison's sake, the 
same density is fixed for all structures in this case, so that only n 
and p vary in turn; the Scale-free structure imposes a common 
density of 2/p. The default values are n = 100, p = 20.

Experiment 3 Effect of the graph density on edge rankings. AUC 
measures are collected for variations of n and p with a density 
of 5/p (5 neighbours per node on average), and for variations 
of density parameters. The default values are n = 100, p = 20.

2.3.4 | Illustrations

The first application deals with fish population measurements in the 
estuary of the Fatala River, Guinea (Baran, 1995, available in the r 
package ade4). The data consist of 95 count samples of 33 fish spe-
cies, and two covariates date and site. We infer the network using 
four models including no covariates, either one or both covariates 
(i.e. respectively the null, site, date and site + date models).

The second example is a metabarcoding experiment designed to 
study oak powdery mildew (Jakuschkin et al., 2016), caused by the 
fungal pathogen Erysiphe alphitoides (Ea). To study the pathobiome of 

oak leaves, measurements were done on three trees with different 
infection status. The resulting dataset is composed of 116 count sam-
ples of 114 fungal and bacterial operational taxonomic units (OTUs) of 
oak leaves, including the Ea agent. The original raw data are available 
at https://www.ebi.ac.uk/ena/data/view/PRJEB 7319. Several covari-
ates are available, among which the tree status, the orientation of the 
branch, and three covariates measuring the distances of oak leaves to 
the ground (D1), to the base of the branch (D2) and to the tree trunk 
(D3). The experiment used different depths of coverage for bacteria 
and fungi, which we account for via the offset term. We fitted three 
Poisson mixed models including none, the tree status or all of the 
covariates (i.e. respectively null, tree and tree + D1 + D2 + D3 models).

To further analyse the inferred networks, we use the between-
ness centrality (Freeman, 1978), a centrality measure popular in so-
cial network analysis. It measures a node's ability to act as a bridge 
in the network. High betweenness scores identify sensitive nodes 
that can efficiently describe a network structure. We compute these 
using the r package igraph.

3  | RESULTS

3.1 | On simulated data

3.1.1 | Effect of dataset dimensions

Behaviours are compared on an easy setting (n = 100, p = 20) and 
a hard setting (n = 50, p = 30). Figure 4 displays FDR and density 
ratio measures for all methods on the different cases. Detailed val-
ues of medians and standard-deviations are given in Tables S3 and 
S4. The behaviour of methods remains virtually the same across 
Erdös and Cluster structures. Scale-free structure appears to en-
tail a greater difficulty for all methods except ecoCopula: the FDR 
increases in easy cases of about 15% for SpeacEasi, MRFcov and 
EMtree, and about 35% for MInt.

The greater difficulty affects all methods. gCoda standard deviation 
increases by 10%. MRFcov, EMtree and MInt show an increase in FDR 
of about 5%, 20% and 30% respectively. Density ratios overall decrease, 
especially for ecoCopula which ratio is close to 0 and yields a proportion 
of empty networks of 15%–25% (Table S5).

Considering FDRs and density ratios combined, EMtree appears 
to be the method with the lower FDR which maintains a density 
ratio reasonably close to 1. As a consequence, the proposed meth-
odology compares well to existing tools on problems with varying 
difficulties. EMtree is also comparable on running times. Table 1 
shows that for Erdös and Cluster it is the third quicker method in 
easy cases and the second in hard ones. Table S6 shows that on 
scale-free problems, EMtree is the second quicker method in hard 
cases, and is curiously slow on easy ones.

Interestingly, in easy cases when the network density is well es-
timated, methods yield FDR of 10%–30% in median. This reminds 
that network inference from abundance data is a difficult task, and 
that perfect inference of the network remains an out-of-reach goal.

https://www.ebi.ac.uk/ena/data/view/PRJEB7319
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3.1.2 | Effect of network structure

As expected for a fixed p, the higher the number of observations 
n, the better the performance for all methods and structures. 
Interestingly, the same happens when p increases for a fixed 
n = 100 (except for SpiecEasi). EMtree performs well on Scale-free 
structures (Figure 5) which was also expected; the other methods 

performance worsen compared to other structures. When lowering 
n to 30, EMtree performance deteriorates along with p, yet remain-
ing above 70% in median in the extreme case where p = n (Figure 5, 
right). The structure being Erdös or Cluster, each method is affected 
in the same way by an increase of n or p (Figure 6). Besides, in-
creasing the difference between the two structures by tuning up 
the ratio parameter has no effect. Overall EMtree performs better 

F I G U R E  4   False discovery rate and density ratio measures for all methods at two different difficulty levels and 100 networks of 
each type. White squares and black plain lines represent medians and quartiles respectively. ecoCopula selection method: AIC. Number of 
subsamples for SpiecEasi and EMtree: S = 20. SpiecEasi and gCoda: lambda.min.ratio = 0.001, nlambda = 100

TA B L E  1   Median and standard-deviation running-time values (in seconds) for Cluster and Erdös structures, including resampling with 
S = 20 for SpiecEasi and EMtree

 SpiecEasi gCoda ecoCopula MRFcov MInt EMtree

Easy 25.45 (1.87) 0.11 (0.06) 5.55 (0.64) 34.51 (3.68) 43.04 (19.76) 11.72 (1.89)

Hard 28.43 (1.30) 0.53 (0.25) 9.6 (0.65) 8.29 (0.36) 33.77 (18.20) 8.17 (0.50)
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than gCoda and SpiecEasi on all the studied configurations. Running 
times are summarized in Table 2. EMtree is about 10 times slower 
than gCoda (4 for small n), and four times faster than SpiecEasi. The 
high standard deviation for small n seems to be due to gCoda strug-
gling with Scale-free structures.

3.1.3 | Effect of network density

The comparison of top and bottom panels of Figure 6 shows that 
network inference gets harder as the network gets denser, whatever 
the method and the structure of the true graph. Running times are 
not affected (Table S8). Figure 7 shows that EMtree performance 
does not deteriorate faster than that of other methods, demonstrat-
ing that the tree hypothesis is not a limitation.

3.2 | Illustrations

In this section we emphasize the importance of covariates for 
network inference. Accounting for environmental effects changes 
the structure of all inferred networks we present; nodes with 
the highest betweenness scores are highlighted to spot these 

F I G U R E  5   Effect of Scale-free 
structure on AUC medians and inter-
quartile intervals for parameters n and p

F I G U R E  6   Effect of Erdös and Cluster structures on AUC medians and inter-quartile intervals for parameters n, p and ratio. Top: densities 
set to 2/p, bottom: densities set to 5/p

TA B L E  2   Median and standard-deviation of running times for 
each method in seconds, for n and p parameters

 n < 50 n ≥ 50 p < 20 p ≥ 20

EMtree 0.44 (0.14) 0.60 (0.17) 0.41 (0.13) 0.76 (0.21)

gCoda 0.11 (26.8) 0.05 (0.05) 0.05 (0.04) 0.09 (0.54)

SpiecEasi 2.09 (0.26) 2.37 (0.28) 2.42 (0.27) 2.42 (0.26)
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changes. Most frequently, it results in reducing the number of 
edges (i.e. making the network sparser). However new edges can 
appear as well, as adjusting for a covariate also reduces the vari-
ability, which improves the detection power. In all examples, we 
used the resampling method described in Section 2.2, which pro-
vides edge selection frequencies. Eventually, we have to thresh-
old these frequencies to draw actual networks; the value of the 
threshold obviously affects the density of the plotted networks 
(see Figure S12).

3.2.1 | Fish populations in the Fatala River estuary

Networks on Figure 8 suggest a predominant role of the site covari-
ate compared to the date. Indeed, adjusting for the site results in 
much sparser networks (Figure S12). It deeply modifies the network 
structure: the site network has 12 new edges and only six in common 
with the null network. Besides, the highlighted nodes only change 
when introducing the site covariate. This suggests that the environ-
mental heterogeneity between the sites has a major effect on the 
variations of species abundances, while the effect of the date of 
sampling is moderate.

3.2.2 | Oak powdery mildew

When providing the inference with more information (tree status,  
distances), the structure of the resulting network is significantly 
modified. Nodes with high betweenness scores differ from one 
model to another. There is an important gap in density between 
the null model and the others, starting from a 25% selection 
threshold (Figure S12). From a more biological point of view, 
the features of the pathogen node are greatly modified too: its 
betweenness score is among the smallest in the null network 
(quantile 16%), and among the highest in the two other networks 
(quantiles 93% and 96%). Its connections to the other nodes vary 
as well. Accounting for covariates results in less interactions with 
the pathogen but a greater role of the latter in the pathobiome 
organization (Figure 9).

Using the dataset restricted to infected samples (39 observa-
tions for 114 OTUs) and correcting for the leaves position in the 
tree (proxy for their abiotic environment), Jakuschkin et al. (2016) 
identifies a list of 26 OTUs likely to be directly interacting with the 
pathogen. Running EMtree on the same restricted dataset with the 
same correction yields a good concordance with edge selection fre-
quencies, as shown in Figure 10.

F I G U R E  7   AUC median and inter-
quartile intervals for parameters 
controlling the number of edges in Erdös 
(edge probability) and in Cluster (density) 
structures, p = 20, n = 100

F I G U R E  8   Interaction networks of Fatala River fishes inferred when adjusting for none, both or either one of the covariates among site 
and date. Highlighted nodes spot the highest betweenness centrality scores. Widths are proportional to selection frequencies. S = 100, 
f′ = 90%
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4  | DISCUSSION

The inference of species interaction network is a challenging task, 
for which a series of methods have been proposed in the past 
years. Abundance data seem to be a promising source of informa-
tion for this purpose. Here we adopt the formalism of graphical 
models to define a probabilistic model-based framework for the 
inference of such networks from abundance data. Using a model-
based approach offers several important advantages. First, it 
enables easy and explicit integration of environmental and experi-
mental effects. These could be modelled in a more flexible way 
using generalized additive models, which include non-linear ef-
fects (Hastie, 2017) generalized. Then, as it also relies on a formal 
statistical definition of a species interaction network in the context 
of graphical models, accounting for abiotic effects and modelling 
species interactions are two clearly defined and distinguished 
goals. Finally, all the underlying assumptions are explicitly stated 
in the model definition itself, and can therefore be discussed and 
criticized.

We developed an efficient method to infer sparse networks, 
which combines a multivariate Poisson mixed model for the joint 

distribution of abundances, with an averaging over all spanning trees 
to efficiently infer direct species interactions. As we do consider a 
mixture over all spanning trees, our approach remains flexible and 
can infer most types of statistical dependencies. An EM algorithm 
(EMtree) maximizes the likelihood of the result and returns each edge 
probability to be part of the network. An optional resampling step 
increases network robustness.

A simulation study in a heterogeneous environment demon-
strates that EMtree compares very well to alternative approaches. 
The proposed model can take all kind of covariates into account, 
which when ignored can have dramatic effects on the inferred net-
work structure, as showed here on empirical datasets. Experiments 
on simulated data and illustrations also demonstrate that EMtree 
computational cost remains very reasonable.

Alternative methods used in this work all rely on an optimized 
threshold to tell an edge presence. This particular threshold is ob-
tained after testing a grid of possible values which all yield a differ-
ent network, and altogether build a path. Making this path available 
to the user is useful, as the final threshold might need modification 
and it gives the possibility to build edges scores and get more than 
a binary result. We found few recent approaches doing this, which 

F I G U R E  9   Pathogen interaction networks on oak leaves inferred with EMtree when adjusting for none, the tree covariate or tree and 
distances. Bigger nodes represent OTUs with highest betweenness values, colors differentiate fungal and bacterial OTUs. Widths are 
proportional to selection frequencies. S = 100, f′ = 90%

F I G U R E  1 0   EMtree selection 
frequencies of pathogen neighbors 
compared to Jakuschkin et al. (2016) 
results, computed on infected samples 
and adjusting for the leaf position  
(100 subs-samples)
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prevented us to study their performance in a way that did not im-
pose a threshold.

The proposed methodology could be extended in several ways. 
Species abundances and interactions indeed vary across space, and 
depend on local conditions (Poisot, Canard, Mouillot, Mouquet, & 
Gravel, 2012; Poisot, Stouffer, & Gravel, 2015). This can either be 
considered as nuisance parameter or as feature of interest. In the 
first case, the method could be extended to account for the spatial 
autocorrelation of sampling sites, to obtain a ‘regional’ interaction 
network corrected for this effect, that is, assuming the network is 
the same in all sites. If of interest, variation across space and local 
conditions could be studied by comparing networks inferred from 
the different sampling locations. Networks comparison is a wide 
and interesting question and tools lack to check which edges are 
shared by a set of networks. The approach introduced by Schwaller 
and Robin (2017) could be adapted to EMtree framework. Lastly, it 
is also very likely that not all covariates nor even all species have 
been measured or observed. Another extension may therefore be to 
detect ignored covariates or missing species. To this purpose EMtree 
could probably be combined with the approach developed by Robin, 
Ambroise, and Robin (2019) to identify missing actors.
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