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Abstract

The availability of large metagenomic data offers great opportunities for the population

genomic analysis of uncultured organisms, which represent a large part of the unexplored

biosphere and play a key ecological role. However, the majority of these organisms lack a

reference genome or transcriptome, which constitutes a technical obstacle for classical pop-

ulation genomic analyses. We introduce the metavariant species (MVS) model, in which a

species is represented only by intra-species nucleotide polymorphism. We designed a

method combining reference-free variant calling, multiple density-based clustering and

maximum-weighted independent set algorithms to cluster intra-species variants into MVSs

directly from multisample metagenomic raw reads without a reference genome or read

assembly. The frequencies of the MVS variants are then used to compute population geno-

mic statistics such as FST, in order to estimate genomic differentiation between populations

and to identify loci under natural selection. The MVS construction was tested on simulated

and real metagenomic data. MVSs showed the required quality for robust population geno-

mics and allowed an accurate estimation of genomic differentiation (ΔFST < 0.0001 and

<0.03 on simulated and real data respectively). Loci predicted under natural selection on

real data were all detected by MVSs. MVSs represent a new paradigm that may simplify and

enhance holistic approaches for population genomics and the evolution of microorganisms.

Introduction

Thanks to advances in deep sequencing and metagenomics, microorganism genomic

resources have become more widely available over the last two decades. By analyzing commu-

nity assemblies containing a large number of uncultured species [1] we are gaining a better

understanding of microbial ecology. This is especially the case for marine, soil and gut micro-

biomes that have been intensively investigated thanks to large sequencing consortia like Tara
Oceans [2, 3], TerraGenome [4] or MetaHit [5].
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Currently, in order to make effective use of whole-genome metagenomic data when

addressing questions of molecular evolution and population genomics in uncultured species,

reference genome or transcriptome sequences are required and a priori selected for the target

species. Typically, metagenomic reads are first aligned on reference sequences for variant call-

ing, then population alleles or amino acid frequencies [6] are obtained. Derived population

genomic metrics are then computed and used to identify genomic differentiation between

populations or natural selection of variants that drive genomes evolution. This approach has in

particular been applied to gut microbiomes of vertebrates [7, 8] and invertebrates [9], marine

bacteria [6, 10] and crustaceans [11].

In metagenomics the filtering step in which reads are aligned is critical in order to avoid the

cross-mapping of reads from a given species to the reference genome of another species. The

main filters are, first, the selection of genomic regions with a depth of coverage within an

expected range specific to the species abundance, and, second, the minimum identity percent-

age of a read aligned to the reference for membership of the targeted species [11, 12].

This alignment-based approach is currently limited by the number of available reference

sequences. To increase the number of references for organisms found in environmental sam-

ples, a number of methods have been developed to produce metagenome assembled species

(MAGs) from whole-genome metagenomic sequencing. These approaches have successfully

been applied to prokaryotes [13–15], but the main limitation of the alignment-based approach

remains, namely that it is dependent on the availability, completeness and quality of reference

genomes that can be constructed from metagenomic data [14]. Recently the approach has

been able to make use of long-read sequencing [16, 17]. However, in the case of eukaryotes,

because of the large genome size and the difficulties in obtaining high molecular weight DNA,

results for eukaryotes are still lacking.

To bypass the use of references in the variant calling process, several reference-free variant

calling methods have been developed. Among them, we can distinguish complete reference-

free approaches as implemented in softwares like ebwt2SNP [18], kmer2SNP [19] and Dis-
coSNP++ [20] to partial reference-free approaches like Kevlar [21] or scalpel [22]. These latter

approaches are based on micro-assembly that generates contigs but still need a reference.

None of these methods were specifically designed to deal with metagenomic data.

To identify nucleotide variants from metagenomic data, the use of DiscoSNP++ has recently

been proposed. DiscoSNP++ detects variants by identifying bubbles in a de Bruijn graph built

directly from the raw metagenomic reads. The variants can then be relocated on genomes of

interest, if available. In comparison to alignment-based variant calling applied on metage-

nomic data, DiscoSNP++ has been shown to be less sensitive but more specific in term of recall,

and more accurate in term of allele frequency, especially in non-coding regions [23]. Given the

sensitivity of population genomic analyses to the accuracy of the allele frequencies, we might

consider the use of DiscoSNP++ preferable to the alignment-based approach for population

genomics based on metagenomic data. Moreover, the indexing method implemented in Dis-
coSNP++ uses bloom filters, a space-efficient probabilistic data structure. This enables the

indexing of very large and complex dataset and makes DiscoSNP++ a very suitable tool to han-

dle metagenomic data.

To bypass the lack of reference for micro-organisms in order to perform population geno-

mics using metagenomic data, we first introduce the notion of metavariants, i.e variants

detected directly from raw metagenomic reads without a reference genome. Then, we present

an approach for clustering metavariants by species when reference genomes are not available.

We propose the resulting clusters as a new form of species representation that we call metavar-
iant species or MVS. We establish a formal definition of the metavariant and MVS. We

implemented the clustering method in an R package called metaVaR. metaVaR allows the
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construction of the MVSs and also their manipulation to perform population genomic analy-

ses. The clustering of metavariants implemented in metaVaR was benchmark with state-of-

the-art clustering algorithms. We also tested the relevance of MVSs using simulated and real

metagenomic data to perform accurate population genomic analyses.

Methods

From metavariants to metavariant species

Variable loci and metavariants. We define a metavariant as a single nucleotide variant

detected directly from metagenomic data without a reference genome (Fig 1). We use metavar-

iants produced by DiscoSNP++ and consider only metavariants located on loci producing one

metavariant. Due to the absence of a reference genome, the reference (a) and alternative (b)

nucleotides are chosen by DiscoSNP++ based on alphabetic order. In a single sample, a and b,

are characterized by the count of reads supporting them, and a locus l that harbors a metavar-

iant can be represented by its depth of coverage c as the sum of reads supporting a and b. Each

locus l is described by the m sample supporting counts l = {c1, . . ., cm}. The n metavariant loci

row vectors li generated from m samples metagenomic data are placed in the n � m depth of

coverage matrix, L ¼ flig ¼ ðcijÞ 2 N
n�m
; i 2 f1; . . . ; ng; j 2 f1; . . . ;mg. At this step, it is

important to note that DiscoSNP++ generates a fasta file of the metavariants that can be possi-

bly mapped on a given reference.

Clustering of metavariants into metavariant species. A metavariant species or MVS cor-

responds to a set of intra-species metavariants of the same species. If it is assumed that L con-

tains both inter and intra-species metavariants, MVSs can be represented by pairwise disjoint

subsets of L not covering L.

As for the binning of metagenomic contigs [24], we consider that the depth of coverage of

the variable loci of the same species covariates across samples and that this constitutes a species

signature. MVSs can thus be identified by clustering L based on its values. However, the com-

plexity of metagenomic data raises several issues. First, the number of species and correspond-

ing MVSs is unknown. Second, the initial set of metavariants contains an admixture of inter

and intra-species metavariants deriving from entire genomes including repeated regions. Only

Fig 1. Metavariants from environmental samples and metagenomic high-throughput sequencing. The example contains three

different species. Species A generates orange reads, species B brown reads and species C red reads.

https://doi.org/10.1371/journal.pone.0244637.g001
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intra-species metavariants from single copy loci are informative for population genomics.

Third, the genome size and the polymorphism rate vary considerably between species. This

impacts the depth of coverage of the loci and the number of variants by species.

Metavariant species construction steps and algorithms. To create MVSs, we propose

the following approach, described in detail in the following sections:

1. Reference-free metavariant calling with DiscoSNP++ from raw metagenomic data (Fig 2A).

2. Metavariant filtering and construction of matrices for the depths of coverage of the different

loci and for metavariant frequencies (Fig 2A).

3. Multiple density-based clustering (mDBSCAN) of the metavariants. Each clustering gener-

ates a set of disjoint metavariant clusters (mvc) (Fig 2B).

4. Each mvc is scored according to its size and the expected depth of coverage distribution of

its loci (Fig 2C).

5. A maximum-weighted independent set (WMIN) algorithm is applied on all mvc to select a

subset of mvc as potential MVSs (Fig 2D).

Fig 2. Metavariant species construction from metagenomic data with metaVaR. A. Variant calling from raw metagenomic data. B. Multiple density-

based clustering of metavariants mDBSCAN-WMIN. Black points represent inter-species variants, while other colored points refer to unclustered

variants. Circle colors represent the dbscan parameters. C. Metavariant cluster scoring. D. Maximum-Weighted Independent Set algorithm. Each node

is a cluster of metavariants, their circle color representing the dbscan parameters used to build the cluster. Grey zones represent the connected

components. Colored nodes are MWIS and black nodes are MWIS neighbors. E. Metavariant filtering for MVS construction. Grey zones correspond to

the single-copy loci. F. Population genomics of MVS.

https://doi.org/10.1371/journal.pone.0244637.g002
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6. Selection of the metavariant loci based on coverage expectation for robust population geno-

mic analysis (Fig 2E).

7. Computation of population genomic metrics for each MVS (Fig 2F).

Multiple density-based clustering of metavariants. To cluster L, we used density-based

clustering (dbscan) [25]. This clustering algorithm requires two input parameters: epsilon (�)

and minimum points (p), corresponding respectively to the minimum euclidean distance

between two points to be considered as members of the same cluster and the minimum num-

ber of points to extend a cluster. Given � and p, dbscan generates a disjoint set of metavariant

clusters {mvc�,p� L}. Intuitively, for L generated from real data, there might be no optimal

(�, p) enabling the best reconstruction of the clusters according to some criterion. Instead of

choosing an arbitrary couple (�, p), we run dbscan using a grid of (�, p) values. This multiple

density-based clustering (mDBSCAN) produces a set of possibly overlapping mvc. We call this

set MVC, which by default is restricted to mvc containing more than 1,000 metavariants.

Scoring of metavariant clusters. Several metagenomic binning approaches use Gaussian

or Poisson distributions to model genome sequencing coverage [13]. However, due to its over-

dispersion, the sequencing depth of coverage can be better approximated using a negative

binomial (NB) distribution [26]. Let mvc�,p,k 2MVC denote the kth mvc computed with param-

eters (�, p). For each mvc�,p,k, in each sample, we compare the observed and expected NB cover-

age distribution of the loci using fitdistrplus [27]. For all possible mvc�,p,k we compute d�,p,k, the

mean across m samples of the log-likelihood of the fitting with θj, the negative binomial distri-

bution parameters in sample j.

d�;p;k ¼
1

m

Xm

j¼1

lnLðyj;mvc�;p;k½j�Þ ð1Þ

with mvc�,p,k[j] being the depth of coverage of the metavariant in the jth sample in mvc�,p,k. We

also compute �d�;p;k 2 ½0; 1�, the corrected mean log-likelihood of each cluster,

�d�;p;k ¼
d�;p;k � dmin
dmax � dmin

; ð2Þ

with dmin and dmax being respectively the smallest and the highest mean log-likelihood

observed over all mvc 2MVC. We also normalised the size s�,p,k of each cluster such as

�s�;p;k 2 ½0; 1�,

�s�;p;k ¼
s�;p;k � smin
smax � smin

; ð3Þ

with smin and smax being respectively the smallest and the highest sizes of all computed mvc.
Finally we compute w�,p,k, the mvc�,p,k score as the geometric mean between (2) and (3),

w�;p;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d�;p;k:�s�;p;k

q
ð4Þ

Metavariant species as a maximum-weighted independent set. Identifying the MVS is

equivalent to simultaneously maximizing the number of non-overlapping mvc and their corre-

sponding weights. This corresponds to a Maximum-Weighted Independent Set (MWIS) prob-

lem. Algorithms for this have been proposed by Sakai and colleagues [28], (Supplementary

Methods 1 in S1 File). Here, we use the WMIN algorithm to find MWIS, the set of all MWISs.
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In this context, MVC can be represented by a weighted undirected graph G(V, E, W), where

8i, j 2 {1, . . ., |V|}, vi 2 V represents mvci of weight wi 2W and eij 2 E,mvci \mvcj 6¼ ; and

mvci 6¼mvcj. We recall here the outline of the Sakai WMIN algorithm, which takes G as input

and iterates until G = ;. At each iteration the following steps are performed: (i) detection of the

connected components (cc); (ii) in each cc, finding the node that is the maximum-weighted

independent set, vi = mwis 2MWIS, if f(vi) = argmax(f), with f ðviÞ ¼
wi

degðviÞþ1
and with deg(vi)

the vi degree; (iii) in each cc, deletion the neighbors of the mwis from G, and storage of mwis
in MWIS and deletion mwis. The fact that this algorithm needs wi 2 R

�
justifies (2) and (3).

Selection of metavariant clusters as metavariant species. A metavariant cluster is a

potential MVS if it satisfies four criteria applied in order as follows. (i) The metavariant cluster

is a maximum-weighted independent set. (ii) The metavariant cluster occurs in more than

kmin populations (set to 4 by default) and corresponding loci have a median depth of coverage

higher than cm (set to 8 by default). (iii) The metavariant cluster’s filtered variable loci have a

depth of coverage within cmin = cm − 2 � sd, cmin� 8 by default and cmax� cm + 2 � sd in all

samples. (iv) The metavariant cluster contains more than mmin2 metavariants (set to 100 by

default). More formally,

mvc ¼ mvs 2 MVS � mvc 2 MWIS

^ j mvc j� mmin1

^ 8j 2 f1; :::; k0g; k0 � kmin;mediani2½1;k�ðci;jÞ � cm

^ 8 mi 2 mvc � cj 2 ½cmin; cmax�; j fmjg j� mmin2

ð5Þ

MVS-based population genomic analysis. The allele frequency of metavariant species

was defined as p ¼ ca
caþcb

, with ca and cb the number of read supporting the alleles a and b.

The allele frequencies are used to compute classical population genomic metrics. This

includes the global FST [29] such as FST ¼
�p

�pð1� �pÞ, with �p being the mean allele frequency

across all samples. We also computed the LK, a normalized FST, such as LK ¼ n� 1
�FST
:FST , with

�FST being the mean FST across all loci. LK is expected to follow a χ2 distribution when a large

majority of the polymorphic loci are under neutral evolution [29]. To estimate the genomic

differentiation between MVS populations, we compute the pairwise-FST between the differ-

ent populations.

Implementation of the mDBSCAN-WMIN algorithm in metaVaR
The metavariants preprocessing step is performed by running metaVarFilter.pl, which pro-

duces the depth of coverage and frequency matrices from a reference-free vcf file. The Meta-
VaR package was written in R and provides three main functions for constructing MVSs:

1. tryParam creates metavariant clusters using several e, p values. We used the R package fit-
distrplus to obtain the log-likelihood of the coverage distribution.

2. getMWIS identify the maximum-weighted independent sets.

3. mvc2mvs applies filters described in (5) to select the MVSs and performs population geno-

mic analysis.

The metaVaR source code and manual are available at https://github.com/madoui/

metaVaR
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Metavariants from simulated metagenomic data

We downloaded six bacterial genomes from NCBI (Escherichia coli NC_000913.3, Pseudomo-
nas aeruginosa NC_002516.2, Yersinia pestis NC_003143.1, Rhizobium tropici NC_020059.1,

Rhizobium phaseoli NZ_CP013532.1, Rhodobacter capsulatus NC_014034.1). For each genome

we created a derived genome where 1% of the genomic sites corresponds to randomly distrib-

uted SNPs for E. coli and 2% for the other bacteria. We used metaSim [30] to simulate Illumina

paired-end 100 bp reads from 300bp genomic fragments on seven communities that contained

different abundances (Fig 3A) and different proportions of original and derived genomes

(Fig 3B).

To generate the metavariants, DiscoSNP++ was run on the total read set with parameter -b
1. As a control, the metavariants were relocated on the six original genomes using the -G

option. From the VCF file produced by DiscoSNP++, the depth of coverage of the biallelic loci

and allele frequencies were calculated using metaVarFilter.pl with parameters -a 10 -b 500 -c 7.

Here, the first two parameters are the minimum and maximum cumulative depths of coverage

of a locus, and the third parameter specifies that a locus is kept only if it occurs in at least seven

samples.

Metavariants from real metagenomic data

To test the performance of the mDBSCAN-WMIN algorithm on real metagenomic data, we

used metagenomic reads from five marine samples collected in the Mediterranean (Table 1).

In a previous study, the reads were processed by DiscoSNP++ and the metavariants were

aligned on the Oithona nana genome. Then, the genomic differentiation between samples was

estimated by pairwise-FST and loci under selection were identified [23].

In the present study, DiscoSNP++ was run on the five read sets and the vcf output was fil-

tered using metaVarFilter.pl with parameters -c 20 -b 250 -c 3. This produced two files contain-

ing the depth of coverage of metavariant loci and the metavariant frequency matrices. These

two files were then used as input for metaVaR and other algorithms used for benchmarking

(see next section for details).

As a control, the metavariants belonging to O. nana were identified by mapping the meta-

variants back onto the O. nana genome. The MWIS corresponding to O. nana was used to

compare the genomic differentiation (pairwise-FST) estimated by metaVaR to the expected

pairwise-FST values computed by the reference-based approach.

In O. nana, loci with LK values that were higher than expected (based on the χ2 distribu-

tion) were considered under selection for p-value� 0.05.

Comparison of mDBSCAN-WMIN to other sequence abundance-based

clustering algorithms

The depth of coverage matrix was used for metavariant clustering by mDBSCAN-WMIN using

parameters e = (3, 4, 5, 6, 7) and p = (5, 8, 10, 12, 15, 20). There are no clustering algorithms

explicitly developed for metavariant clustering. It is though possible to solve this clustering

problem using other sequence abundance-based clustering algorithms, such as those used in

RNA-seq data analysis to identify co-expressed genes. We tested state-of-the-art clustering

algorithms as follows using coseq [31]: (i) centered log-ratio transform and k-means clustering

(with k values from 2 to 12); (ii) arcsin transform and Gaussian Mixture Model with the same

k values as in (i); (iii) logit transform and GMM with the same k values as in (i).

To evaluate the performances of each clustering algorithm on simulated data, the clusters

were first assigned to one single original genome. It was based on the highest proportion of
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Fig 3. Simulated seven-metagenomic dataset on an admixture of six bacterial species containing within-species single nucleotide

polymorphism. A. Variable loci genomic coverage distribution of the species. B. Within-species variants frequencies distribution.

https://doi.org/10.1371/journal.pone.0244637.g003
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metavariants originating from the same genome, using the results of the alignment of the

metavariants performed with bwa mem with default parameters.

For a cluster, we defined the true positives TP as the number of metavariants of the cluster

deriving from the original genome, the false positives FP as the number of metavariants of the

cluster not deriving from the original genome, the false negatives FN as the number of meta-

variants of the original genome not present in the cluster. We computed the recall, precision

and signal to noise (STN) of each cluster, as follows: recall ¼ TP
TPþFN, precision ¼ TP

TPþFP,

STN ¼ recall
1� precision, with TP, the number true positives, FN the number of false negatives and FP

the number of false positives.

The global purity and entropy of the clustering was computed as follows: Purity ¼
1

n

Pk
q¼1

max1�j�lnj
q with n the number of metavariants, nj

q the number of metavariants in cluster

q belonging to original species j, and Entropy ¼ �
Pk

q¼1

Pl
j¼1

njq
nq
log

2

njq
nq

, where n is the total

number of metavariants, nq the total number of samples in cluster q, and nj
q the number of

samples in cluster q belonging to the original species j.
To evaluate the accuracy of the (pairwise-FST) computed from the simulated data by meta-

VaR, we calculated the difference between all possible (pairwise-FST) for each bacteria com-

puted by metaVaR to the expected pairwise-FST obtained with the alignment-based approach

according to the pattern presented on Fig 3B where, for each bacteria, the abundance of the

derived genome increases continuously from sample metaG1 to sample metaG7.

To test the sample size effect on the metaVaR performances, we sampled all possible combi-

nations of three to six metagenomes from the seven initially simulated metagenomes. Then,

we ran metaVaR using the following grid parameters e = (3, 4, 5, 6, 7) and p = (5, 8, 10, 12,

15, 20). For each run, we calculated the purity, entropy, precision and recall as previously

described.

Results

Metavariant species as a new modelling of organisms from metagenomic

data

In the absence of a reference genome to guide metagenomic data analyses for population geno-

mics, we model species only by their variable loci. They are characterized by their associated

depths of coverage and variant frequencies across environmental samples. We called this

model metavariant species or MVS, and we proposed a method for constructing MVSs from

multisample raw metagenomic data (Fig 1). The method is based on reference-free variant

calling using metagenomic reads from different samples by DiscoSNP++ (Fig 2A).

In the context of metagenomics, the variants are termed metavariants and clustered into

MVSs. The metavariants are clustered by multiple density-based clustering (mDBSCAN) based

Table 1. Metavariant clustering performances on simulated metagenomic data.

Algorithm Software Recall Precision Signal-To-Noise Purity Entropy Time CPU (min)�

mDBSCAN-WMIN metaVaR 0.5523 0.9996 1691.18 0.9999 0.008 3.96

CLR-kmeans coseq 0.5945 0.9941 99.79 0.993 0.22 1.66

arcsin-GMM coseq 0.3007 0.998 158.24 0.9915 1.77 4.41

logit-GMM coseq 0.2685 0.9993 408.6 0.9892 1.76 5.94

�The computation was performed on Intel(R) Core(TM) i5-7200U CPU.

https://doi.org/10.1371/journal.pone.0244637.t001
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on the covariation of the depth of coverage of the corresponding variable loci across samples

(Fig 2B). Clusters are then scored statistically based on the expected depth of coverage of the

variable loci they contain in each sample (Fig 2C). The best clusters are selected by a maxi-

mum-weighted independent set (WMIN) algorithm (Fig 2D) and variable loci with a minimal

coverage threshold are selected to obtain the final MVSs (Fig 2E). The method was imple-

mented in a R package called metaVaR that allows users to build and manipulate MVSs for

population genomic analyses (Fig 2F). The relevance of the MVSs and metaVaR was tested for

population genomics use.

Metavariant species on simulated metagenomic data

To test the relevance of MVSs for population genomic analyses, we simulated seven metage-

nomic data sets composed of Illumina short reads from an admixture of six bacteria in various

abundances (Fig 3A). Each bacterial species was composed of two strains in various abun-

dances (Fig 3B), with a continuous increase of the derived strains abundance from metaG1 to

metaG7. Metavariants were detected by DiscoSNP++ and filtered, giving 90,593 metavariants

from which the depths of coverage of the variable loci and metavariant frequency matrices

were computed.

The metavariants were clustered into MVS candidates using the mDBSCAN-WMIN algo-

rithm, and the clustering performances were compared with the performances of three state-

of-the-art algorithms [31]: (i) centered log-ratio and kmeans (CLR-kmeans); (ii) arcsin trans-

form + Gaussian mixture model (arcsin-GMM); (iii) logit transform + Gaussian mixture

model (logit-GMM).

The clustering performances of the four algorithms are summarized in Table 1 and illus-

trated in Fig 4. Overall, the mDBSCAN-WMIN algorithm had the highest precision, signal to

noise ratio (STN), purity and entropy. mDBSCAN-WMIN was slightly but not significantly

less sensitive than CLR-kmeans (Fig 4A), (paired U-test, P� 0.05). mDBSCAN-WMIN was sig-

nificantly more precise than the three other algorithms (Fig 4B) and had a significantly higher

STN (Fig 4C) (paired U-test, P� 0.05). Moreover, three of the mDBSCAN-WMIN clusters out

Fig 4. Metavariant clustering performances of four clustering algorithms. A. Recall of metavariant clusters. B.

Precision of metavariant clusters. C. Signal to noise of metavariant clusters. D. Population pairwise-FST difference

between MVS and the alignment-based method.

https://doi.org/10.1371/journal.pone.0244637.g004
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of the six contained zero false positives. The arcsin-GMM and logit-GMM methods showed

significantly lower recall (paired U-test, P� 0.05).

The six clusters selected by mDBSCAN-WMIN correspond to three different DBSCAN
parameter settings. Four clusters generated with e = 6, p = 8 were selected, one cluster for

e = 6, p = 5 and one for e = 7, p = 12. This is a good illustration that with our scoring method

there is not one single couple (e, p) that gives the highest-scoring metavariant clusters.

The samples size effect on the metaVaR performances was tested by sampling several times

different number of metagenomes (Fig 5). We observed that the precision and purity increase

with the number of metagenomes used as input while the recall and entropy decrease. The

MVSs corresponding to the six initial species can be found using a minimum of five metage-

nomic samples.

The accuracy of the pairwise-FST estimation based on MVS was evaluated for the four clus-

tering algorithms and compared with the accuracy obtained using metavariant alignment on

the six bacterial genomes (Fig 4D). Pairwise-FST estimated on clusters from the four algorithms

showed negligible differences with the reference-based approach for DFST
� 0:01. However,

the CLR-kmeans algorithm showed the lowest DFST
values.

Metavariant species on real metagenomic data

To evaluate the relevance of MVS on real metagenomic data generated from environmental

samples containing more complex genomes than the bacterial samples, we selected five meta-

genomic marine samples known to contain the zooplankter Oithona nana in sufficient abun-

dance for population genomic analyses [23].

We ran DiscoSNP++ on the raw data and generated 1,159,157 metavariants, filtered into

138,676 metavariants. The metavariants were clustered into MVSs using the same four cluster-

ing algorithms as previously tested for simulated data. MVSs corresponding to O. nana were

identified by aligning the metavariants on its genome. mDBSCAN-WMIN and CLR-kmeans
detected the O. nana MVS, but the two other methods generated the maximum number of

MVSs allowed by the parameters (i.e 12 clusters), with no clusters assigned to O. nana. These

Fig 5. Sample size effect on metavariant clustering performances.

https://doi.org/10.1371/journal.pone.0244637.g005
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two other methods are therefore not considered further (Table 2). The O. nana MVS built

by mDBSCAN-WMIN is less complete but more accurate than that built by CLR-kmeans
(Table 2). The metavariants that were not relocated on the O. nana may include missing parts

of the genome assembly.

The pairwise-FST matrices of the O. nana MVSs (Fig 6A) showed small differences in rela-

tion to alignment-based FST values (DFST
� 0:03) (Fig 6B). To illustrate potential MVS applica-

tions, we performed several downstream analyses, including isolation-by-distance (IBD) (Fig

6C), species co-differentiation (Fig 6D), and natural selection tests (Fig 6E and 6F). In the

Mediterranean, the Lagrangian distances between the western and eastern basin sampling sites

(S10, 11, 12 and S24, 26 respectively) can to a large extent explain the O. nana genomic differ-

entiation (Mantel r = 0.73, p − value� 0.05) (Fig 6C) [32]. Comparing the genomic differentia-

tion trends between three MVSs (detected by the mDBSCAN-WMIN) revealed a negative

correlation between MVS2 and MVS3, but no co-differentiation patterns between other MVS

pairs.

Table 2. Metavariant clustering performances on real metagenomic data.

Algorithm Software Number of cluster Recall� Precision� Signal-To-Noise� Time CPU

mDBSCAN-WMIN metaVaR 3 0.1592 0.8144 1691.18 1.48

CLR-kmeans coseq 4 0.1662 0.7182. 99.79 4.5

arcsin-GMM coseq 12 - - - 5.53

logit-GMM coseq 12 - - - 4.9

�Performances for the O. nana cluster. Time CPU is in minutes.

https://doi.org/10.1371/journal.pone.0244637.t002

Fig 6. Examples of applications and accuracy of metavariant species. A. Genomic differentiation based on pairwise

FST of O. nana populations from the MVS built with DBSCAN-WMIN. B. Difference of FST values between alignment-

based method and MVSs. C. Mantel test with Lagrangian distances. D. Co-differentiation between species. E. LK

distribution. F. Venn diagram of loci predicted under selection (LK p-value� 0.001) by the different approaches.

https://doi.org/10.1371/journal.pone.0244637.g006
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Loci under selection in Mediterranean populations of O. nana were identified based on LK

outlier values produced by the MVS-based and the alignment-based methods. For all three

approaches, the LK distribution suggests neutral evolution at most of the O. nana polymorphic

sites (Fig 6E). The prediction of loci under selection based on extreme LK values in the three

approaches showed that all loci predicted under selection by the alignment-based approach

are identified in the O. nana MVSs. Plus, more loci are identified under selection by both clus-

tering methods, which differs only for one loci (Fig 6F).

Loci characterized by extreme LK values were positively detected with the three approaches.

The 12 loci predicted under selection by the alignment-based approach are identified in the O.
nana MVSs. More loci are identified under selection by both clustering methods, which differs

only for one loci (Fig 6F).

Discussion

Modeling species’ nucleotide polymorphism by metavariant species

Large-scale nucleotide polymorphism detection traditionally requires reference sequences

such as a genome or transcriptome assemblies. In most species, these resources are lacking,

which greatly reduces the scope of population genomic investigations, since the choice of spe-

cies is limited to those that have been sequenced. The small number of species that have a tran-

scriptome or genome reference are unrepresentative of the whole genomic landscape of small

eukaryote-rich biomes found in the oceans in particular [2]. MVS representation allows this

obstacle to be overcome, making it possible to investigate a much larger number of species,

including unknown species for which few or no genomic resources are available. However, if a

reference sequence is available for a targeted species, we recommend also to use classical refer-

ence and alignment-based approaches.

MVS modelling nevertheless still requires a minimal amount of genomic information,

which includes the variable loci of single copy regions and their variant frequencies in different

samples. This information is sufficient for basic population genomic analyses, such as genomic

differentiation and detection of loci under natural selection. The extraction of this information

from raw metagenomic data through the use of DiscoSNP++ does not need a reference or

assembly, and generates accurate variant frequencies in a reasonable time using computational

resources, even for very large datasets [23].

Our results showed a large amount of false negative metavariants that where not assigned

to any MVS using both mDBSCAN-WMIN or other coseq clustering algorithms. This can be

explained by the fact that we used only the metagenomic abundance. The reads depth of cover-

age distribution is known to be over-dispersed when using Illumina sequencing [26], which

disables to cluster all loci into MVC in the simulated data and a fortiori in real data. However,

we proved that the accuracy of the population genomic metrics is not affected by this false neg-

ative rate (or low recall) and metaVaR estimates accurate FST with both simulated and real

data.

To ease the MVS-based population genomic analysis, we selected only the biallelic loci

which defacto reduces the complexity of the analysis but allows to compute directly the allele

frequency instead of working on the four nucleotides frequencies.

As the allele frequency estimation bias depends greatly on the depth of coverage. High

depth of coverage (>20x) allows more accurate allele frequency estimation, but such coverage

are not always reached in metagenomic samples. However, here the selection of loci with at

least 8x is sufficient to provide useful information for accurate allele frequency estimation.

In order to gain an ecological insight from MVSs, we recommend performing a taxonomic

assignment of the MVSs, which can be done by aligning the variable loci sequences generated
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by DiscoSNP++ against public sequence databases. Due to their short length, metavariants can

be aligned using classical short read aligners. Such taxonomic assignment of metavariants has

already been successfully performed on real large metagenomic data set [33]. Moreover, for

users with specific interest in a particular species, genome or transcriptome references can be

used directly during the variant calling step using only DiscoSNP++ with no need of metaVaR.

The challenge of metavariant classification by species

The accuracy of the genomic differentiation estimation depends on the sample size and the

number of markers. Having an exhaustive set of SNPs is not mandatory, but a large set

(> 1,000 SNPs) is preferable [34]. The number of metavariants required for an MVS to be con-

sidered valid is critical. Moreover, the loci under selection often represent a small fraction of

the genome. Increasing the number of metavariants in an MVS can help to detect these loci,

but it is crucial to avoid false positives that generate biased FST values. In metagenomics, false

positives are metavariants assigned to a species that they do not belong to. FST values derived

from mis-assigned metavariants may generate outliers and support false signals of natural

selection. For this reason precision may be deemed to be the criterion with the highest priority.

Clustering the metavariants using mDBSCAN-WMIN and CLR-kmeans gave the best cluster-

ing results on simulated and real data, but mDBSCAN-WMIN is nonetheless more specific but

less sensitive. Both methods have also their own particular limitations. With mDBSCAN-W-
MIN a variety of clustering parameters (e, p) generally needs to be tried. For example, values

for e ranging from 0.1 to 1 and p from 10 to 100 can be initially tried. However, several runs

will often be necessary to obtain all possible MVSs. CLR-kmeans involves trying different val-

ues of k with no prior knowledge, and the optimum value of k may be missed.

From our simulations, the number of metagenomic samples appeared to be critical to find

all the possible MVSs and it seems reasonable to use at least six metagenomic samples to obtain

MVSs with a high precision. However, the between samples homogeneity of the species rela-

tive abundance may also affect the performance of the method. Meaning that two species

whose abundance covariates may be clustered in the same MVS. To cope with this problem,

increasing the number of metagenomic samples remains a good option. However, as demon-

strated by our simulations and due to metavariants filtering, the increasing number of samples

will also lead to a decrease of the recall.

Toward a holistic view of microorganism genomic differentiation and

natural selection

Current population genomic analyses focus on one single species at a time for which we do

not have a sequence reference. Thanks to MVSs, the genomic differentiation of several species

without genomic reference can be modelled simultaneously, and hypotheses like isolation-by-

distance can be tested on each species. The genomic differentiation of MVSs can be compared

and species sharing common differentiation profiles can be identified to illustrate possible co-

differentiation or similar gene flow. However, even if the method is able to retrieve several

MVSs from multiple samples, this will never cover the whole complexity within and among

samples. Indeed, only few species present a sufficient sequencing depth of coverage and

enough metavariants to pass the quality filters in real samples.

To give an idea of the potential of metaVaR on real large metagenomic data, we tested our

method on four data sets containing several millions of metavariants from a total of 114 sam-

ples produced in a previous study [23] using Tara Oceans data and we obtained a total of 113

MVSs (Supplementary Result 1 in S1 File). The investigations of these MVSs will hopefully

lead to new knowledge on plankton molecular evolution.
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Another relevant MVS application concerns natural selection. The ratio of loci under selec-

tion over the total number of variable loci is an interesting metric for estimating the impact

of natural selection on the molecular evolution of a species. This ratio can be computed for

each MVS and the different ratios compared in order to assess the relative effect of natural

selection.

Current limitations and future developments for metavariant species-

based population genomics

Pairwise-FST currently remains a robust metric for tracing the silhouette of the genomic differ-

entiation from metagenomic data. The absence of genotypes and haplotypes and their relative

frequencies precludes intra-population analysis, and makes it impossible to compute p-values

for FST. Moreover, the use of population genomic tools enabling the estimation of nucleotide

diversity, the identification of genomic structure, and the testing of evolutionary trajectories

and past demographic events is not yet possible. For these reasons, future developments focus-

ing on variant phasing and haplotyping from metagenomic data will greatly help to improve

MVS applications. In this context, the use of long read sequencing technologies will be of great

benefit, by supporting long-range haplotypes spanning several kilobases.

Conclusion

MVSs make it feasible to carry out population genomic analyses of unknown organisms with-

out a reference genome or genome assembly. MVSs are suitable for genomic differentiation

and natural selection analysis. Simultaneous access to nucleotide polymorphisms of different

species present in the same ecosystem allows for a holistic view of microorganism genomic

differentiation and adaptation. Future developments will attempt to reconstruct species

haplotypes based on metavariant species, in order to provide a more accurate view of species

evolution.
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