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Abstract

Genome-Wide Association Studies (GWAS) explain only a small frac-
tion of heritability for most complex human phenotypes. Genomic heri-
tability estimates the variance explained by the SNPs on the whole genome
using mixed models and accounts for the many small contributions of
SNPs in the explanation of a phenotype.

This paper approaches heritability from a machine learning perspective,
and examines the close link between mixed models and ridge regression.
Our contribution is twofold. First, we propose estimating genomic heri-
tability using a predictive approach via ridge regression and Generalized
Cross Validation (GCV). We show that this is consistent with classical
mixed model based estimation. Second, we derive simple formulae that
express prediction accuracy as a function of the ratio n

p
, where n is the

population size and p the total number of SNPs. These formulae clearly
show that a high heritability does not imply an accurate prediction when
p > n.

Both the estimation of heritability via GCV and the prediction accu-
racy formulae are validated using simulated data and real data from UK
Biobank.

Keyword - heritability, prediction accuracy, ridge regression, mixed model,
Generalized Cross Validation

1 Introduction

The old nature versus nurture debate is about whether a complex human trait
is determined by a person’s genes or by the environment. It is a longstanding
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philosophical question that has been reinvestigated in the light of statistical
genetics (Feldman and Lewontin, 1975). The concept of heritability was in-
troduced by Sewall Wright (Wright, 1920, 1921) and Ronald Fisher (Fisher,
1919) in the context of pedigree data. It has proved highly useful in animal
(Meuwissen et al., 2001) and plant genetics (Xu, 2003) for selection purposes
because of its association with accurate prediction of a trait from genetic data.
In the last decades, Genome-Wide Association Studies (GWAS) have become
highly popular for identifying variants associated with complex human traits
(Hirschhorn and Daly, 2005). They have recently been used for heritability esti-
mations (Yang et al., 2010). A shortcut is often made between the heritability of
a trait and the prediction of this trait. However, heritable complex human traits
are often caused by a large number of genetic variants that individually make
small contributions to the trait variation. In this context, the relation between
heritability and prediction accuracy may not hold (de Vlaming and Groenen,
2015).

The goal of this paper is to establish a clear relation between prediction
accuracy and heritability, especially when the number of genetic markers is much
higher than the population size, which is typically the case in GWAS. Based
on the linear model, statistical analyses of SNP data address very different and
sometimes unrelated questions. The most commonly performed analyses tend
to be association studies, where multiple hypothesis testing makes it possible
to test the link between any SNP and a phenotype of interest. In genomic
selection, markers are selected to predict a phenotype with a view to selecting an
individual in a breeding population. Association studies and genomic selection
may identify different sets of markers, since even weak associations might be
of interest for prediction purposes, while not all strongly associated markers
are necessarily useful, because of redundancy through linkage disequilibrium.
Genomic heritability allows quantifying the amount of genomic information
relative to a given phenotype via mixed model parameter estimation. The
prediction of the phenotype using all genomic information via the mixed model
is a closely related but different problem.

We approach the problem of heritability estimation from a machine learning
perspective. This is not a classical approach in genetics, where inferential
statistics is the usual preferred tool . In this context, heritability is considered as
a parameter to be inferred from a small sample of the population. The machine
learning approach places the emphasis on prediction accuracy. It makes a clear
distinction between performance on training samples and performance on testing
samples, whereas inferential statistics focuses on parameter estimation on a
single dataset.

1.1 Classical Approach via Mixed Models

Heritability is defined as the proportion of phenotypic variance due to genetic
factors. A quantitative definition of heritability requires a statistical model. The
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model commonly adopted is a simple three-term model without gene-environment
interaction (Henderson, 1975) :

y = g + f + e,

where y ∈ Rn is a quantitative phenotype vector describing n individuals, f ∈ Rn
is a non-genetic covariate term, g ∈ Rn is a genetic term and e ∈ Rn an
environmental residual term. The term g will depend on the diploid genotype
matrix M ∈Mn,p (R) of the p causal variants.

There are two definitions of heritability in common use: first, there is H2,
heritability in the broad sense, measuring the overall contribution of the genome;
and second, there is h2, heritability in the narrow sense (also known as additive
heritability), defined as the proportion of phenotypic variance explained by the
additive effects of variants.

The quantification of narrow-sense heritability goes back to family studies by
Fisher (1919), who introduced the above model with the additional hypothesis
that g is the sum of independent genetic terms, and with e assumed to be normal.
This heritability in the narrow sense is a function of the correlation between the
phenotypes of relatives.

Although Fisher’s original model makes use of pedigrees for parameter esti-
mation, some geneticists have proposed using the same model with genetic data
from unrelated individuals (Yang et al., 2011a).

Polygenic model

In this paper, we focus on the version of the additive polygenic model with
a Gaussian noise where g = Zu, f = Xβ, with Z ∈ Mn,p (R) a standardized
(by columns) version of M, u ∈ Rp a vector of genetic effects, X ∈Mn,r (R) a
matrix of covariates, β ∈ Rr a vector of covariate effects, µ an intercept and
e ∼ N

(
0n, σ

2In
)

a vector of environmental effects.

The model thus becomes

y = µ1n + Zu+ Xβ + e, (1)

where 1n ∈ Rn a vector of ones.

Estimation of heritability from GWAS results

To estimate heritability in a GWAS context, a first intuitive approach would be
to estimate u with a least squares regression to solve problem (1). Unfortunately,
this is complicated in practice for three reasons: the causal variants are not
usually available among genotyped variants; genotyped variants are in linkage
disequilibrium (LD); and the least squares estimate is only defined when n > p,
which is not often the case in a GWAS (Yang et al., 2010).
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One technique for obtaining a solvable problem is to use the classical GWAS
approach to determine a subset of variants significantly associated with the
phenotype . The additive heritability can then be estimated by summing their
effects estimated by simple linear regressions. In practice this estimation tends
to greatly underestimate h2 (Manolio et al., 2009). It only takes into account
variants that have passed the significance threshold after correction for multiple
comparisons (strong effects) and does not capture the variants that are weakly
associated with the phenotype (weak effects).

Estimating heritability via the variance of the effects

Yang et al. (2010) suggest that most of the missing heritability comes from
variants with small effects. In order to be able to estimate the information carried
by weak effects they assume a linear mixed model where the vector of random
genetic effects follows a normal homoscedastic distribution u ∼ N (0p, τIp). They
propose estimating the variance components τ and σ2, and defining genomic
heritability as h2G = pτ

pτ+σ2 . An example of an algorithm for estimating variance

components is the Average Information - Restricted Maximum Likelihood (AI-
REML) algorithm, implemented in software such as Genome-wide Complex Trait
Analysis (GCTA) (Yang et al., 2011a) or gaston (Perdry and Dandine-Roulland,
2018).

1.2 A statistical learning approach via ridge regression

The linear model is used in statistical genetics for exploring and summarizing
the relation between a phenotype and one or more genetic variants, and it is also
used in predictive medicine and genomic selection for prediction purposes. When
used for prediction, the criterion for assessing performance is the prediction
accuracy.

Although least squares linear regression is the baseline method for quantitative
phenotype prediction, it has some limitations. As mentioned earlier, the estimator
is not defined when the number of descriptive variables p is greater than the
number of individuals n. Even when n > p, the estimator may be highly variable
when the descriptive variables are correlated, which is clearly the case in genetics.

Ridge regression is a penalized version of least squares that can overcome
these limitations (Hoerl and Kennard, 1970). Ridge regression is strongly related
to the mixed model and is prediction-oriented.

1.2.1 Ridge regression

The ridge criterion builds on the least squares criterion, adding an extra pe-
nalization term. The penalization term is proportional to the `2 norm of the
parameter vector. The proportionality coefficient λ is also called the penalization
parameter. The penalty tends to shrink the coefficients of the least squares
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estimator, but never cancels them out. The degree of shrinkage is controlled by
λ: the higher the value of λ, the greater the shrinkage:

ûR = arg min
u

‖y− Zu‖22 + λ ‖u‖22 , (2)

=
(
ZTZ + λIp

)−1
ZTy, (3)

= ZT
(
ZZT + λIn

)−1
y. (4)

Ridge regression can be seen as a Bayesian Maximum a Posteriori esti-
mation of the linear regression parameters considering a Gaussian prior with
hyperparameter λ.

The estimator depends on a λ that needs to be chosen. In a machine learning
framework, a classical procedure is to choose the λ that minimizes the squared
loss over new observations.

The practical effect of the penalty term is to add a constant to the diagonal
of the covariance matrix, which makes the matrix non-singular, even in the case
where p > n. When the descriptive variables are highly correlated, this improves
the conditioning of the ZTZ matrix, while reducing the variance of the estimator.

The existence theorem states that there always exists a value of λ > 0 such
that the Mean Square Error (MSE) of the ridge regression estimator (variance plus
the squared bias) is smaller than the MSE of the Maximum Likelihood estimator
(Hoerl and Kennard, 1970). This is because there is always an advantageous
bias-variance compromise that reduces the variance without greatly increasing
the bias.

Ridge regression also allows us to simultaneously estimate all the additive
effects of the genetic variants without discarding any, which reflects the idea
that all the variants make a small contribution.

1.2.2 Link between mixed model and ridge regression

This paper builds on the parallel between BLUPs (Best Linear Unbiased Pre-
dictions) derived from the mixed model and ridge regression (Meuwissen et al.,
2001). The use of ridge regression in quantitative genetics has already been
discussed (de Vlaming and Groenen, 2015; De los Campos et al., 2013) We
look at a machine-learning oriented paradigm for estimating the ridge penalty
parameter, which provides us with a direct link to heritability. There is an
equivalence between maximizing the posterior p (u|y) and minimizing a ridge
criterion (Bishop, 2006). The penalty hyperparameter of the ridge criterion λ is
defined as the ratio of the variance parameters of the mixed model:

arg max
u

p (u|y) = arg min
u

‖y− Zu‖22 + λ ‖u‖22 with λ =
σ2

τ
. (5)
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The relation between λ and h2G (de Vlaming and Groenen, 2015) is thus:

h2G =
p

p+ λ
; λ = p

1− h2G
h2G

. (6)

1.2.3 Over-fitting

Interestingly, ridge regression and the mixed model can be seen as two similar
ways to deal with the classical over-fitting issue in machine learning, which is
where a learner becomes overspecialized in the dataset used for the estimation
of its parameters and is unable to generalize (Bishop, 2006). When n > p,
estimating the parameters of a fixed-effect linear model via maximum likelihood
estimation may lead to over-fitting, when too many variables are considered.
A classical way of reducing over-fitting is regularization, and in order to set
the value of the regularization parameter there are two commonly adopted
approaches: first, the Bayesian approach, and second, the use of additional data.

Mixed Model parameter estimation via maximum likelihood can be seen as
a type of self-regularizing approach (see Equation 5). Estimating the variance
components of the mixed model may be interpreted as a kind of empirical Bayes
approach, where the ratio of the variances is the regularization parameter that is
usually estimated using a single dataset. In contrast to this, in order to properly
estimate the ridge regression regularization hyperparameter that gives the best
prediction, two datasets are required. If a single dataset were to be used, this
would result in an insufficiently regularized (i.e., excessively complex) model
offering too high prediction performances on the present dataset but unable to
predict new samples well. This over-fitting phenomenon is particularly evident
when dimensionality is high.

The fact that the complexity of the ridge model is controlled by its hyper-
parameter can be intuitively understood when considering extreme situations.
When λ tends to infinity, the estimated effect vector (ie ûR) tends to the null
vector. Conversely, when λ tends to zero, the model approaches maximum
complexity. One solution for choosing the right complexity is therefore to use
both a training set to estimate the effect vector for different values of the hyper-
parameter and a validation set to choose the hyperparameter value with the best
prediction capacity on this independent sample. An alternative solution, when
data is sparse, is to use a cross-validation approach to mimic a two-set situation.
Finally, it should be noted that the estimation of prediction performance on
a validation dataset is still overoptimistic, and consequently a third dataset,
known as a test set, is required to assess the real performance of the model.

1.2.4 Prediction accuracy in genetics

In genomic selection and in genomic medicine, several authors have been in-
terested in predicting complex traits that show a relatively high heritability
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using mixed model BLUPs (Speed and Balding, 2014). The litterature defined
the prediction accuracy as the correlation between the trait and its prediction,
which is unusual in machine learning where the expected loss is often preferred.
Several approximations of this correlation have been proposed in the literature
(Brard and Ricard, 2015), either in a low-dimensional context (where the number
of variants is lower than the number of individuals) or in a high-dimensional
context.

Daetwyler et al. (2008) derived equations for predicting the accuracy of a
genome-wide approach based on simple least-squares regressions for continuous
and dichotomous traits. They consider one univariate linear regression per
variant (with a fixed effect) and combine them afterwards, which is equivalent
to a Polygenic Risk Score (PRS) (Pharoah et al., 2002; Purcell et al., 2009).
Goddard (2009) extended this prediction to Genomic BLUP (GBLUP), which
used the concept of an effective number of loci. Rabier et al. (2016) proposed
an alternative correlation formula conditionally on a given training set. Their
formula refines the formula proposed by Daetwyler et al. (2008). Elsen (2017)
used a Taylor development to derive the same formula in small dimension.

Using intensive simulation studies, de Vlaming and Groenen (2015) showed
a strong link between PRS and ridge regression in terms of prediction accuracy,
when the population size is limited. However, with ridge regression, predictive
accuracy improves substantially as the sample size increases.

It is important to note a difference in the prediction accuracy of GBLUP when
dealing with human populations as opposed to breeding populations (De los
Campos et al., 2013). De los Campos et al. (2013) show that the squared
correlation between GBLUP and the phenotype reaches the trait heritability,
asymptotically when considering unrelated human subjects.

Zhao and Zhu (2019) studied cross trait prediction in high dimension. They
derive generic formulae for in and out-of sample squared correlation. They link
the marginal estimator to the ridge estimator and to GBLUP. Their results are
very generic and generalize formulae proposed by Daetwyler et al. (2008).

1.2.5 Outline of the paper

While some authors have proposed making use of the equivalence between
ridge regression and the mixed model for setting the hyperparameter of ridge
regression according to the heritability estimated by the mixed model, we propose
on the contrary to estimate the optimal ridge hyperparameter using a predictive
approach via Generalized Cross Validation. We derive approximations of the
squared correlation and of the expected loss, both in high and low dimensions.

Using synthetic data and real data from UK Biobank, we show that our
results are consistent with classical mixed model based estimation and that our
approximations are valid.
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Finally, with reference to the ridge regression estimation of heritabilty, we
discuss how heritability is linked to prediction accuracy in highly polygenic
contexts.

2 Materials and Methods

2.1 Generalized Cross Validation for speeding up heri-
tability estimation via ridge regression

2.1.1 Generalized Cross Validation

A classical strategy for choosing the ridge regression hyperparameter uses a grid
search and k -fold cross validation. Each grid value of the hyperparameter is
evaluated by the cross validated error. This approach is time-consuming in high
dimension, since each grid value requires k estimations. In the machine learning
context, we propose using Generalized Cross Validation (GCV) to speed up the
estimation of the hyperparameter λ and thus to estimate the additive heritability
h2G using the link described in Equation 6.

The GCV error in Equation 7 (Golub et al., 1978) is an approximation of the
Leave-One-Out error (LOO) (see Supplementary Material). Unlike the classical
LOO, GCV does not require n ridge regression estimations (where n is the number
of observations) at each grid value, but involves a single run. It thus provides a
much faster and convenient alternative for choosing the hyperparameter. We
have

errGCV =
‖y− ŷ (λ)‖22[

1
n tr (In −Hλ)

]2 , (7)

where ŷ (λ) = ZûR (λ) = Hλy is the prediction of the training set phenotypes
using the same training set for the estimation of ûR with

Hλ =Z
(
ZTZ + λIp

)−1
ZT

=ZZT
(
ZZT + λIn

)−1
.

A Singular Value Decomposition (SVD) of the Hλ can be used advantageously
to speed up GCV computation (see Supplementary Material).

2.1.2 Empirical centering can lead to issues in the choice of penal-
ization parameter in a high-dimensional setting

In high dimensional settings (p > n), the use of GCV after empirical centering
of the data can lead to a strong bias in the choice of λ and thus in heritability
estimation. Let us illustrate the problem with a simple simulation. We simulate a
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phenotype from synthetic genotype data with a known heritability of h2 = 0.25,
n = 1000 individuals, p = 10000 variants and 100% causal variants. The
simulation follows the additive polygenic model without intercept or covariates,
as described in Section 2.3. Before applying GCV, genotypes are standardized in
the most naive way : the genotype matrix M is empirically centered and scaled
column-wise, resulting in the matrix Z. Since we want to mimic an analysis
on real data, let us assume that there is a potential intercept in our model (in
practice the empirical mean of our simulated phenotype is likely to be non-null):

y = µ1n + Zu+ e. (8)

GCV expects all the variables to be penalized, but penalizing the intercept
is not relevant. We therefore consider a natural two-step procedure: first
the model’s intercept is estimated via the empirical mean of the phenotype
µ̂ = 1

n

∑
i yi, and, second, GCV is applied on the empirically centered phenotype

y = y− µ̂1n.

Figure 1 shows the GCV error (dotted line). Heritability is strongly overesti-
mated. The GCV error appears to tend towards its minimum as λ approaches 0
(i.e. when h2 tends to 1).

This is a direct consequence of the empirical standardization of M and
of the phenotype. By centering the columns of M with the empirical means
of those columns, a dependency is introduced, and each line of the resulting
standardized genotype matrix Z becomes a linear combination of all the others.
The same phenomenon of dependency can be observed with the phenotype
when using empirical standardization. Given the nature of the LOO in general
(where each individual is considered successively as a validation set), this kind
of standardization introduces a link between the validation set and the training
set at each step: the “validation set individual ” can be written as a linear
combination of the individuals in the training set. In high dimension, this
dependency leads to errLOO −−−→

λ→0
0 (see Supplementary Material ), due to

over-fitting occurring in the training set.

From a GCV perspective, a related consequence of the empirical centering
of the genotype data is that the matrix ZZT has at least one null eigenvalue
and an associated constant eigenvector in a high dimensional setting (see Sup-
plementary Material). This has a direct impact on GCV: using the singular
value decomposition of the empirically standardized matrix Z = UDVT with
U ∈ On (R), V ∈ Op (R) two orthogonal squared matrices spanning respectively
the lines and columns spaces of Z while D ∈Mn,p (R) is a rectangular matrix
with singular values {d1, ..., dn} on the diagonal. In a high dimensional context:

errGCV (y,Z, λ)
d2n=0−−−→
λ→0

(1n
Ty)2. Performing the “naive” empirical centering of
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Figure 1: Example of biased estimation by GCV if p > n. We computed the
GCV error curve with n = 1000 individuals, p = 10000 causal variants and
simulated heritability h2sim = 0.25. We used a grid of λ corresponding to the
grid of heritability {0.01, 0.02, ..., 0.99} using the link described in Equation 6
and computed the GCV error for those λ after empirical standardization of the
data (dotted line). The λ that minimizes the GCV error corresponds to the
heritability estimation. Here the GCV error tends to its minimum as h2 tends to
1, and heritability is thus largely over-estimated. The plain line corresponds to
the GCV error obtained after correction of this bias by the projection approach
(see Section 2.1.3), which provides a satisfactory estimation of h2.
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the phenotype results in

errGCV (y− µ̂1n,Z, λ)
d2n=0−−−→
λ→0

(1n
Ty− 1nT µ̂1n)2 = 0.

The very same problem is observed for a more general model with covariates
(see Supplementary Material).

2.1.3 A first solution using projection

A better solution for dealing with the intercept (and a matrix of covariates
X ∈ Mn,r (R)) in ridge regression is to use a projection matrix as a contrast
and to work on the orthogonal of the space spanned by the intercept (and the
covariates).

Contrast matrices are a commonly used approach in the field of mixed models
for REstricted Maximum Likelihood computations ( REML ) (Patterson and
Thompson, 1971). REML provides maximum likelihood estimation once fixed
effects are taken into account. Contrast matrices are used to “remove” fixed
effects from the likelihood formula. If we are only interested in the estimation
of the component of variance, we do not even need to make this contrast
matrix explicit : any semi-orthogonal matrix C ∈ Mn−r−1,n (R) such that

CCT = In−r−1 and C× (µ1n + Xβ) = 0n−r−1 provides a solution. In a ridge
regression context, an explicit expression of û is needed for choosing the optimal
complexity. An explicit form for C is therefore necessary.

In the presence of covariates, a QR decomposition can be used to obtain
an explicit form for C. In the special case of an intercept without covariates,
there is a convenient choice of C. Since the eigenvector of ZZT associated
with the final null eigenvalue is constant, C = [U1, ...,Un−1]

T ∈Mn−1,n (R) is
a contrast matrix adapted for our problem. Additionally, by considering CZ
instead of Z, we have CZ = D−nVT → CZZTCT = D−nDT

−n with D−n the
matrix D deprived of row n. This choice of contrast matrix thus simplifies the
GCV formula and allows extremely fast computation.

2.1.4 A second solution using 2 data sets

Dependency between individuals can be a problem when we use the same data for
the standardization (including the estimation of potential covariate effects) and
for the estimation of the genetic effects. This can be overcome by partitioning
our data. Splitting our data into a standardization set and a training set, we
will first use the standardization set to estimate the mean and the standard
deviation of each variant, the intercept, and the potential covariate effects. Those
estimators will then be used to standardize the training set on which GCV can
then be applied .
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This method has two main drawbacks. The first is that the estimation of the
non-penalized effects is done independently of the estimation of the genetic effects,
even though in practice we do not expect covariates to be highly correlated with
variants. The other drawback is that it reduces the number of individuals for
the heritability estimation (which is very sensitive to the number of individuals).
This approach therefore requires a larger sample than when using projection.

2.2 Prediction versus Heritability in the context of small
additive effects

Ridge regression helps to highlight the link between heritability and prediction
accuracy. What is the relation between the two concepts ? Is prediction accuracy
an increasing function of heritability ?

In a machine learning setting we have training and testing sets. The index tr

refers to the training set, while te refers to the test set.

The classical bias-variance trade-off formulation considers the expectation
of the loss over both the training set and test individual phenotype. It breaks
down the prediction error into three terms commonly called variance, bias and
irreducible error. In this paper we do consider Ztr as fixed and the genotype of
a test individual as random, and somewhat abusively continue to employ the
terms variance, bias and irreducible error:

Eytr,yte,zte

[
(yte − ŷte)2

]
= Ezte

[
Eytr,yte|zte

[
(yte − ŷte)2

]]
= Ezte [var(yte|zte) + var(ŷte|zte)] +

Ezte
[(
Eytr|zte [ŷte]− Eyte|zte [yte]

)2]
.

Assuming a training set genotype matrix Z ∈ Mn,p(R) (without index tr

to lighten notations) whose columns have zero mean and unit variances, we

denote Kλ =
(
ZTZ + λIp

)−1
ZT . Assuming the independence of the variants

Ezte [zte] = 0p and var(zte) = Ip, irreducible error, variance and bias become:

Ezte [var(yte|zte)] = σ2

Ezte [var(ŷte|zte)] = σ2tr
(
KλK

T
λ

)
Ezte

[(
Eytr|zte [ŷte]− Eyte|zte [yte]

)2]
= uT (KλZ− Ip)

2
u.

where u is the vector of the ridge parameters.

Since individuals are assumed to be unrelated, the covariance matrix of the
individuals is diagonal. The covariance matrix of the variants is also diagonal,
since variants are assumed independent. Assuming scaled data, ZZT and ZTZ

12



are the empirical estimations of covariance matrices of respectively the individuals
and the variants (up to a p or n scaling factor). Two separate situations can be
distinguished according to the n/p ratio. In the high-dimensional case where
p > n, the matrix ZZT estimates well the individuals’ covariance matrix up to a
factor p. Where n > p, on the other hand, ZTZ estimates well the covariance
matrix of variants up to a factor n. Eventually, ZZT ' pIn when n < p and
ZTZ ' nIp when n > p.

Assuming further that

• ∀i ∈ J1, nK var(yi) = 1, we then have σ2 = 1− h2 ,

• heritability is equally distributed among normalized variants i.e. ∀j ∈
J1, pK var(uj) = h2

p (which is indeed the mixed model hypothesis),

• uTu ' p× h2

p and (Zu)T (Zu) ' nh2,

the expected prediction error can be stated more simply, according to the n
p

ratio:

Eytr,yte,zte

[
(yte − ŷte)2

]
'

1− n
p (h2)2, if p ≥ n

(1− h2)
1+n

p h
2

1+h2(np−1)
, otherwise.

(9)

When considering the theoretical quadratic error with respect to the log
ratio of the number of individuals over the number of variants in the training
set (Figure 2), as expected we have a decreasing function. This means that the
larger the number of individuals in the training sample, the smaller the error.
We also observe that the higher the heritability, the smaller the error. Both
of these things are intuitive, and as a consequence the error tends towards the
irreducible error when n becomes much larger than p. What is more surprising
is that the prediction error is close to the maximum, whatever the heritability,
when n is much smaller than p. Paradoxically, even with the highest possible
heritability, if the number of variants is too large in relation to the number of
individuals, no prediction is possible.

Similarly, the prediction error can be computed on the training set instead of
on the test set. Using the same assumptions as before, the expected prediction
error on the training set can be approximated by:

Eytr

[
1

n
(ytr − ŷtr)

T (ytr − ŷtr)

]
'

{
(1− h2)2 if p > n,

1− 2 n
n+λ

(
p
n (1− h2) + h2

)
+
(

n
n+λ

)2 (
p
n (1− h2) + h2

)
otherwise.

A graph similar to Figure 2 for this expected error can be found in Supple-
mentary Material. Interestingly, when p > n, the error on the training set does
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Figure 2: Theoretical Quadratic Error with respect to the log ratio of the
number of individuals over the number of variants in the training set. Each
curve corresponds to a given heritability (in the narrow sense). Note that the
total variance is assumed to be 1.
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not depend on the n/p ratio. When n becomes greater than p, it increases and
tends towards the irreducible error 1− h2 when n� p. As shown in Figure 2,
the error on the test set is always higher than the irreducible error and thus
higher than the error on the training set, which is a sign of over-fitting . However,
the difference between the error on the test set and the error on the training set
is a decreasing function of the n/p ratio, which is linear when p > n and tends
towards zero when n� p.

Another popular way of looking at the predictive accuracy is to consider the
squared correlation between yte and ŷte (Daetwyler et al., 2010; Goddard, 2009):

corr2(yte, ŷte) =
cov2(yte, ŷte)

var [yte] var [ŷte]
.

Although correlation and prediction error both provide information about the
prediction accuracy, correlation may have an interpretation that is intuitive, but
it does not take the scale of the prediction into account. From a predictive point
of view, this is clearly a disadvantage. Considering yte, zte, and ytr to be random,
and using the same assumptions that were made in relation to prediction error,
the three terms of the squared correlation become:

cov2(yte, ŷte) = (uTKλZtru)2,

var [ŷte] = tr(KT
λKλ × σ2In) + (Ztru)TKT

λKλ(Ztru),

var [yte] = 1.

Like in the case of prediction error, replacing ZZT or ZTZ by their expecta-
tions, the squared correlation simplifies to:

corr2(yte, ŷte) '

{
n
p (h2)2 if n < p,

(h2)2
p
n (1−h2)+h2 otherwise.

(10)

When considering this theoretical squared correlation with respect to the log
ratio of the number of individuals over the number of variants in the training
set (Figure 3), we have, as expected, an increasing function. Similarly, the
higher the heritability, the higher the squared correlation. We also observe that
when n � p, the squared correlation tends toward the simulated heritability.
Conversely, when p� n, it is close to zero whatever the heritability.

2.3 Simulations and real data

Since narrow-sense heritability is a quantity that relates to a model, we will
first illustrate our contributions via simulations where the true model is known.
We perform two different types of simulation: fully synthetic simulations where
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Figure 3: Theoretical squared correlation between phenotype and its prediction
with respect to the log ratio of the number of individuals over the number of
variants in the training set. Each curve corresponds to a given heritability (in
the narrow sense).
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both genotypes and phenotypes are drawn from statistical distributions, and
semi-synthetic simulations where UK Biobank genotypes are used to simulate
phenotypes. We also illustrate our contributions using height and body mass
index (BMI) from the UK Biobank dataset.

We first assess the performance of GCV for heritability estimation and then
look at the accuracy of the prediction when the ratio of the number of individuals
to the number of variants varies in the training set.

2.3.1 UK Biobank dataset

The present analyses were conducted under UK Biobank data application number
45408. The UK Biobank dataset consists of ' 784K autosomal SNPs describing
' 488K individuals. We applied relatively stringent quality control and minor
allele frequency filters to the dataset (callrate for individuals and variants > 0.99
; p-values of Hardy-Weinberg equilibrium test > 1e-7 ; Minor Allele Frequency >
0.01), leading to 473054 and 417106 remaining individuals and SNPs respectively.

Two phenotypes were considered in our analyses: height (standing) and
BMI. In order to have a homogeneous population for the analysis of these
real phenotypes, we retained only those individuals who had reported their
ethnicity as white British and whose Principal Component Analysis (PCA)
results obtained by UK Biobank were consistent with their self-declared ethnicity
. In addition, each time we subsampled individuals we removed related individuals
(one individual in all pairs with a Genetic Relatedness Matrix (GRM) coefficient
> 0.025 was removed, as in Yang et al. (2011b). Several covariates were also
considered in the analysis of these phenotypes: the sex, the year of birth, the
recruitment center, the genotyping array, and the first 10 principal components
computed by UK Biobank.

2.3.2 Synthetic genotype data

The synthetic genotype matrices are simulated as in Golan et al. (2014) and
de Vlaming and Groenen (2015). This corresponds to a scenario with independent
loci or perfect linkage equilibrium.

To simulate synthetic genotypes for p variants, we first set a vector of variant
frequencies f ∈ Rp, with these frequencies independently following a uniform
distribution U ([0.05, 0.5]). Individual genotypes are then drawn from binomial
distributions with proportions f , to form the genotype matrix M. A matrix of
standardized genotypes Z∗ can be obtained by standardizing M with the true
variant frequencies f .

2.3.3 Simulations to assess heritability estimation using GCV

We consider both synthetic and real genetic data, and simulate associated
phenotypes.
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In the two simulation scenarios we investigate the influence on heritability
estimation of the following three parameters : the shape of the genotype matrix
in the training set (the ratio between n the number of individuals and p the
number of variants), the fraction of variants with causal effects fc, and the true
heritability h2sim. The tested levels of these quantities are shown in Table 1.

Parameters Levels
n/p Simulation : 1000/10000 ; 5000/100000 ; 10000/500000

Data-based : 1000/10000 ; 5000/100000 ; 10000/417106
fc 0.1 ; 0.5 ; 1
h2sim {0.1, ..., 0.9}

Table 1: Table of the parameters sets of the simulations. n/p : the ratio of the
dimensions of the genotype matrix. fc : proportion of causal variants. h2sim :
simulated heritability.

For each simulation scenario and for a given a set of parameters (n, p, fc, h
2
sim),

the simulation of the phenotype starts with a matrix of standardized genotypes
(either a synthetic genotype matrix Z∗ standardized with the true allele fre-
quencies, as described in Section 2.3.2, or a matrix of empirically standardized
genotypes Z obtained from UK Biobank data). To create the vector of genotype
effects u, p× fc causal SNPs are randomly sampled and their effects are sampled
from a multivariate normal distribution with zero mean and a covariance matrix
τIp×fc (where τ =

h2
sim

p×fc ), while the remaining p× (1− fc) effects are set to 0.
The vector of environmental effects e is sampled from a multivariate normal
distribution with zero mean and a covariance martrix σ2In, where σ2 = 1−h2sim.
The phenotypes are then generated as y = Z∗u+ e and y = Zu+ e, for the fully
synthetic scenario and the semi-synthetic scenario respectively. A standardiza-
tion set of 1000 individuals (that will be used for the GCV approach based on
two datasets) is also generated for each scenario in the same way.

Applying GCV to large-scale matrices can be extremely time-consuming,
since it requires the computation of the GRM associated with Z∗ or Z and the
eigen decomposition of the GRM. For this reason we employed the same strategy
as de Vlaming and Groenen (2015) in order to speed up both simulations and
analyses by making it possible to test more than one combination of simulation
parameters . We simulated an (nmax = 10000 × pmax = 500000) genotype
matrix for the training set in the fully synthetic scenario and used this simulated
matrix for all the 9 × 3 × 3 = 81 (h2sim × fc × n/p) parameter combinations.
Similarly, we sampled nmax = 10000 individuals from the UK Biobank dataset
to obtain an (nmax = 10000 × pmax = 417106) genotype matrix for the training
set in the semi-synthetic scenario. Smaller matrices were then created from a
subset of these two large matrices (note that for subsets of the real genotype
matrix we took variants in the original order to keep the linkage disequilibrium
structure). Consequently, computation of the GRM and its eigen decomposition
needed to be performed only once for each n/p ratio considered.

18



The fully synthetic and the semi-synthetic scenarios were each replicated 30
times.

2.3.4 Simulations to assess prediction accuracy

We performed fully synthetic simulations for different ratios n
p in order to study

the behavior of the mean prediction error and the correlation between the
phenotype and its prediction . We considered a training set of size n = 1000,
and a test set of size nte = 5000. The maximum number of variants was set
to pmax = 50000 and the heritability to h2 = 0.6. We first simulated a global
allelic frequency vector f ∼ Upmax(0.05, 0.5) and a global vector of genetic effects

u ∼ N
(

0pmax ,
h2

pmax
Ipmax

)
.

For each subset of variants of size p < pmax, we selected a vector of genetic

effects composed of the p first components of u multiplied by a
√

pmax
p factor

assuring a total variance of 1 and var(up) = h2

p Ip.: u
p = (u1, ..., up) ×

√
pmax
p .

The genotype matrix Mte was then simulated and its normalized version Z∗te
computed as described in Section 2.3.2. The normalization used the first p
components of f . The noise vector ete ∼ N (0nte , (1− h2)Inte) and a vector of
phenotypes yte = Z∗teu

p + ete were eventually simulated.

We generated 300 training sets by simulating the normalized genotype matrix,
noise and phenotype using the same process as for the test set. Here, the training
set index is denoted as k . A prediction ŷte,k for the test set was made with each

training set using the ridge estimator of up obtained with λ = p 1−h2

h2 , and the

following empirical quantities were estimated: errp = 1
300

∑
k

1
nte

∥∥yte,k − ĝp
∥∥2
2
,

bias2p = 1
nte

∑
i∈J1,nteK

([
Zteu

p − ĝp
]
i

)2
and varp = 1

300

∑
k

1
nte

∥∥ŷte,k − ĝp
∥∥2
2
,

where ĝp =
(

1
300

∑
k∈J1,300K

[
ŷte,k

]
i

)
i∈J1,nteK

. The squared correlation between

ŷte,k and yte,k was also estimated.

We considered the following numbers of variants:

p ∈ {50000, 25000, 16667, 12500, 10000, 5000, 3333, 2500, 2000, 1667,

1429, 1250, 1111, 1000, 500, 136, 79, 56, 43, 35, 29, 25, 22, 20}.

2.4 Prediction of Height and BMI using UK Biobank data

To experiment on UK Biobank for assessing the prediction accuracy, for each
phenotype we considered three sets of data: a training set for the purpose of
learning genetic effects, a standardization set for learning non-penalized effects
(covariates and intercept), and a test set for assessing predictive power. Pre-
treatment filters (as described in section 2.3.1) were systematically applied
on the training set. We computed the estimation of genetic effects using the
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projection-based approach to take into account non-penalized effects, where the
penalty parameter was obtained by GCV with the same projection approach:

ûR = ZTtrC
T
tr

(
CtrZtrZ

T
trC

T
tr + λ̂GCV In−r

)−1
Ctrytr.

We then estimated non-penalized effects (here X contains the intercept):

β̂ =
(
XT
stdXstd

)−1
XT
std (ystd) . (11)

Finally, we applied these estimations on the test set:

ĝte = ZteûR,

f̂te = Xteβ̂,

ỹte = yte − f̂te,

in order to compute the Mean Square Error = 1
nte

(ỹte− ĝte)
T (ỹte− ĝte) between

the phenotype residuals ỹte after removal of non-penalized effects and ĝte.

This procedure was performed for different ratios n
p using different sized

subsets of individuals for the training set, while keeping all the variants that
passed pre-treatment filters (see Table 2).

Set Size
Training {1000, 2000, 5000, 10000, 20000}

Standardization 1000
Test 1000

Table 2: Size (number of individuals) of training, standardization and test sets
for assessing predictive power on real data.

For each number n of individuals considered in the training set, the sampling
of these individuals was repeated several times, as seen in Table 3, in order to
account for the variance of the estimated genetic effects due to sampling.

Size of the training set 1000 2000 5000 10 000 20 000
Number of repetitions 100 70 50 20 10

Table 3: Number of repetitions for the evaluation of the predictive power on real
data.
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(A) Fully-synthetic simulation scenario:
variants are simulated independently.

(B) Semi-synthetic simulation scenario:
correlation between variants.

Figure 4: Distribution of (h2est − h2sim) for different parameter combinations
with 30 replications. Panel (A) corresponds to data simulated under the “fully
synthetic” procedure, while panel (B) corresponds to the “semi-synthetic sim-
ulation” procedure. Each sub-panel corresponds to a different value of n/p.
In both scenarios 10% of the variants have causal effects. For each panel, the
horizontal axis corresponds to the simulated heritability h2sim ∈ {0.1, ..., 0.9} and
the vertical axis corresponds to (h2est − h2sim). Heritability estimations are done
with the random effects model using AI-REML and with ridge regression using
3 approaches for the choice of λ : GCV with a projection correction, GCV with
a two-dataset correction and a 10-fold cross-validation (CV 10f).

3 Results

3.1 Generalized Cross Validation for heritability estima-
tion

3.1.1 Simulation results

For the two simulation scenarios we look at the difference between the estimation
of h2g by GCV and the simulated heritability h2sim in different configurations of
study size n/p, h2sim and the fraction of causal variants fc . Similarly, we look at
the difference between the estimation by the classical mixed model approach and
the simulated heritability. In our simulations fc was seen to have no influence,
and so only the influence of the remaining parameters is shown in Figure 4. For
full results see Supplementary Material.

For the fully-simulated scenario, the two GCV approaches give very similar
results and appear to provide an unbiased estimator of h2. They compare very
well with the estimation of heritability by ridge regression with a 10-fold CV.
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Moreover, the variance of the GCV estimators does not appear higher than the
variance of 10-fold CV . Our choice of using GCV in place of a classical CV
approach for estimating heritability by ridge regression is therefore validated.

In the case of the semi-synthetic simulations, here too both GCV approaches
provide a satisfactory heritability estimation.

For both simulation scenarios we also note that the classical mixed model
approach (using the AI-REML method in the gaston R package) gives heritability
estimations that are very similar to those obtained using the GCV approaches.
The value of simulated heritability does not appear to have a strong effect on the
quality of the heritability estimation. On the other hand, the ratio n/p seems
to have a real impact on estimation variance, with lower ratios leading to lower
variances, which initially might appear surprising. One possible explanation for
this is that in our simulations n increases as the ratio n/p decreases. Visscher
and Goddard (2015) showed that the variance of the heritability is a decreasing
function of n, which could explain the observed behaviour.

3.1.2 Illustration on UK Biobank

We now compare heritability estimations between the two GCV approaches and
the classical mixed model approach for height and BMI, on a training set of
10000 randomly sampled individuals (the training set being of the same size as
for the simulated data). All three approaches take account of covariates and the
intercept. The AI-REML approach also uses a projection matrix to deal with
covariates. For the GCV approach based on two datasets, a standardization set
of 1000 individuals is also sampled, and for comparison purposes we have chosen
to apply this two-set strategy to the classical mixed model approach as well.

Since the true heritability is of course unknown with real data, the sampling
of the training and standardization sets is repeated 10 times in order to account
for heritability estimation variability. Note that the SNP quality control and
MAF filters were repeated at each training set sampling and applied to the
standardization set.

Figure 5 shows that for each phenotype the two GCV approaches and the
classical mixed model approach (AI-REML) give similar estimations. There is
relatively little estimation variability, and any variability observed seems depend
more on the individuals sampled for the training set than on the approach used.

3.2 Prediction versus Heritability in the context of small
additive effects

3.2.1 Prediction from synthetic data

As expected, the mean of the test set error follows closely the theoretical curve
when the log n

p varies (Figure 6). When n > p, the mean of the test set is close
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Figure 5: Heritability estimation of BMI and height using AI-REML and GCV,
with the projection-based approach andwith the two-set approach. We sub-
sampled the original UK Biobank dataset 10 times for replication. The cross
corresponds to the mean and the error bar to the mean +/- one standard
deviation.

23



●

● ●

●
●

● ●

●

●
●

●

●
●

●

●

●

●
● ● ● ●●●●

0.4

0.6

0.8

1.0

−4 −2 0 2 4

log(n/p)

 M
ea

n 
sq

ua
re

d 
er

ro
r 

on
 th

e 
te

st
 s

et
 

● ● ● ● ●
● ●

● ● ●
●●●●

●

● ● ● ● ● ●●●●

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

−4 −2 0 2 4

log(n/p)

 M
ea

n 
sq

ua
re

d 
er

ro
r 

on
 th

e 
te

st
 s

et

(A) (B)

Figure 6: Mean Squared Error of the prediction on the test set with respect
to log(np ), using simulated data with h2 = 0.6. The curves correspond to

the theoretical link for h2 = 0.6. The black points correspond to the mean
expectation for each value of log(np ) over 300 repetitions. The error bars in (A)

and (B) correspond respectively to one standard deviation of the test set error
obtained using two different aggregation strategies. On the left (A), we consider
an aggregation strategy where each of the 300 training sets results in a mean
test set error, whereas on the right (B) each individual in the test set results in
an error averaged over all training sets.

to the minimum possible error, which means that the ridge regression provides a
reliable prediction on average.

Interestingly, if the mean error behaves as expected by our approximation,
the standard deviation of the error may be very large. Figures 6A and 6B show
the same mean error with different error bars. Figure 6A plots the error bars
corresponding to the training set variation: the mean test set error is computed
for each training set and the error bars show one standard deviation across the
300 training sets. Figure 6B plots the error bars corresponding to the variation
of the errors across the test set.

The error bars in Figure 6B are much larger than those in Figure 6A, which
shows that the variation in the prediction error is mostly due to the test individual
whose phenotype we wish to predict, and depends little on the training set. This
may be explained by the fact that the environmental residual term can be very
large for some individuals. For these individuals the phenotype will be predicted
with a very large error even when n� p, that is to say when the genetic term is
correctly estimated, irrespective of the training set (see Supplementary Material).

The squared correlation between the phenotype and its prediction, as a
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Figure 7: Mean squared correlation between the phenotype and its prediction
on the test set with respect to log(np ), using simulated data with h2 = 0.6. The
salmon points correspond to the evaluation of the squared correlation and the
black points correspond to the mean expectation for each value of log(np ) over
300 repetitions. Red dots correspond to training set replications. The red plain
curve corresponds to Daetwyler’s approximation for h2 = 0.6, while the blue
dashed curve corresponds to Rabier’s approximation and the green dotted curve
corresponds to ours.

function of log n
p , is also in line with our approximation (Figure 7). As expected,

when n� p, the squared correlation tends toward the simulated heritability. We
compared our approximation with the approximation obtained by Daetwyler et al.
(2008) and observed that although Daetwyler’s approximation is very similar to
ours when p� n, our simulation results make Daetwyler’s approximation appear
under-optimistic when n � p . Finally, we also compared our approximation
with that obtained by Rabier et al. (2016), which is the same as ours when n > p.
However, when p > n, Rabier’s approximation appears over-optimistic.

3.2.2 Prediction from UK Biobank data

Let us consider the proposed theoretical approximation of the predictive power
of ridge regression with respect to the n/p ratio applied to the UK Biobank data,
for height and BMI residuals (after removal of covariate effects and intercept).
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The two phenotypes differ considerably as regards heritability: we estimate
by the projection-based GCV approach that 73, 33% of height is “heritable”
whereas only 33, 91% of BMI is ( on average over the 10 training samples of
20000 individuals).

These estimated values are close to those currently found in the literature
(Ge et al., 2017). It is important to note that the heritability estimation is
strongly dependent on the filters. Variations of up to 20% were observed in the
estimations when the filtering procedure setup was slightly modified .

A major difference between UK Biobank data and our simulations designed
to check the proposed approximation lies in the strong linkage disequilibrium
present in the human genome. Several papers have proposed using the effective
number of independent markers to make adjustments in the multiple testing
framework (Li et al., 2012), and we likewise propose adjusting our prediction
model by taking into account an effective number of SNPs (pe). We estimate
the effective n

pe
ratio for each training set and for each considered n value using

the observed mean square errors, the estimated heritability, and the theoretical
relation in the case of independent variants Eytr,yte,zte

[
(yte − ŷte)2

]
= 1− n

p (h2)2

when p > n. We then use a simple linear regression to find the coefficient between
these estimated n

pe
ratios and the corresponding real n

p ratios.

Table 4 shows different but close effective numbers of SNPs for the two
phenotypes.

Phenotype p/pe
Height 5.01
BMI 3.48

Table 4: Effective number of SNPs

We also consider normalizing the test set errors using the mean square error
of phenotype residuals (after removing non-penalized effects). Using this error
normalization and adjusting the theoretical curve for an effective number of
SNPs, we observe a close fit between the estimated errors on the test set and
their theoretical values (Figure 8).

4 Discussion

In this work we investigated an alternative computation of genomic heritability
based on ridge regression. We proposed a fast, reliable way to estimate the
optimal penalisation parameter of the ridge via Generalized Cross Validation
adapted for high dimension. The genomic heritability estimated from the
GCV gives results comparable to mixed model AIREML estimates. It clearly
demonstrates that a predictive criterion allows a reliable choice of the penalisation
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Figure 8: Normalized Mean Squared Error on the test set for the prediction of
Height (A) and BMI (B) with respect to the log ratio of the number of individuals
over the number of markers in the training set. Salmon dots correspond to
training set replications, black dot to the mean of replications for different ratio
and we show one standard deviation (over the training sets) of the mean test set
error. The theoretical curves are fitted using the estimated heritability and an
effective number of markers.

parameter and associated heritability, even when the prediction accuracy of
ridge regression is low. Moreover, even though our approach does not formally
consider Linkage Disequilibrium, simulations showed that it still provides reliable
genomic heritability estimates in presence of realistic Linkage Disequilibrium .

We also provided theoretical approximations of the ridge regression prediction
accuracy, in terms of both error and correlation between the phenotype and its
prediction on new samples. These approximations perform well on synthetic data,
in both high and low dimensions. They rely on the assumption that individuals
and markers are independent in approximating the empirical covariance matrices.
Our approximation of the prediction accuracy in terms of correlation proposes
a good compromise between existing approximations. In particular, it exhibits
similar performances to Daetwyler et al. (2008) when p > n and to Rabier et al.
(2016) when p < n.

Our theoretical approximation of the prediction error is also consistent with
the error observed on real genetic data when p > n, after adjusting for the
effective number of independent markers. Unfortunately, due to computational
issues, we were unable to perform the analysis in the n ' p case with real
data. However, we observed that the prediction accuracy already reaches almost
15% of the heritability of height when n/p ' 5%, while De los Campos et al.
(2013) suggested that its asymptotic upper bound is of the order of 20% of
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the heritability because of incomplete LD between causal loci and genotyped
markers. Interestingly, ridge regression is not affected by correlated predictors,
and consequently it is not affected by high LD between markers. When LD is
high, this has the effect of reducing the degrees of freedom of the model (Dijkstra,
2014), which results in an improved prediction accuracy in comparison with
a problem having the same number of independent predictors and the same
heritability.

Although our approximations and simulation results tend to show that the
prediction accuracy can reach the heritability value when n� p, as already sug-
gested by previous works (Daetwyler et al., 2008; Rabier et al., 2016; de Vlaming
and Groenen, 2015), the large standard deviation of the prediction error that we
observed between simulated individuals suggests that disease risk prediction from
genetic data alone is not accurate at the individual level, even for a relatively
high heritability value in the context of a small additive effect hypothesis.

In direct continuity of this work, it would be interesting to investigate the
behavior of prediction accuracy on real human data where n ' p. This would
enable us to determine whether our approximations still hold in that case, and
even in the case where n > p (where we approximate the empirical covariance
matrix of the markers to be diagonal) . It would show whether it is possible
for the prediction accuracy to exceed the upper bound proposed by De los
Campos et al. (2013). A further prospect would be to consider a nonlinear model
extension via kernel ridge regression, which may improve the prediction (Morota
and Gianola, 2014).
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Supplementary Material

4.1 A useful algebra for ridge regression

ZT
(
ZZT + λIp

)
=
(
ZTZ + λIn

)
ZT

⇒
(
ZTZ + λIn

)−1
ZT
(
ZZT + λIp

)(
ZZT + λIp

)−1
=
(
ZTZ + λIn

)−1 (
ZTZ + λIn

)
ZT
(
ZZT + λIp

)−1
⇒
(
ZTZ + λIn

)−1
ZT = ZT

(
ZZT + λIp

)−1
.

4.2 Computation of the GCV

4.2.1 Computation of the LOO error

To compute the leave-one-out error ( LOO ) error, the estimation of ridge
regression parameters without individual i, û−iR , is required. Let us recall the
Sherman-Morrison-Woodbury’s formula : let A ∈ Mp a non-singular matrix
and u, v ∈ Rp.

(
A + uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (12)

Using Sherman-Morrison-Woodbury’s formula in the context of ridge regres-
sion, we have(

ZT−iZ−i + λIp

)−1
=
(
ZTZ− zizTi + λIp

)−1
=
(
ZTZ + λIp

)−1
+

(
ZTZ + λIp

)−1
ziz

T
i

(
ZTZ + λIp

)−1
1− zTi

(
ZTZ + λIp

)−1
zi

with zi ∈ Rp the column vector corresponding to the normalized genotypes of
the i-th row (i.e. the i-th individual) of Z and Z−i ∈Mn−1,p(R) the matrix Z
excluding its i-th row .

Noticing that

ZT−iy−i = ZTy− ziyi,

31



it is straightforward to get

û−iR =
(
ZT−iZ−i + λIp

)−1
ZT−iy−i

=

(ZTZ + λIp

)−1
+

(
ZTZ + λIp

)−1
ziz

T
i

(
ZTZ + λIp

)−1
1− zTi

(
ZTZ + λIp

)−1
zi

(ZTy− ziyi
)

= ûR −
(
ZTZ + λIp

)−1
ziyi +

(
ZTZ + λIp

)−1
ziz

T
i

(
ZTZ + λIp

)−1
1− zTi

(
ZTZ + λIp

)−1
zi

(
ZTy− ziyi

)
.

Using that zTi

(
ZTZ + λIp

)−1
zi = [hλ]ii and remembering that yi is a scalar

we have

û−iR = ûR −
(ZTZ + λIp)

−1zi(yi − zTi ûR)

1− [hλ]ii
.

Injecting this expression in the classic Mean Squared Error ( MSE ), the
LOO error expresses as

errLOO(λ) =
1

n

n∑
i=1

(
yi − zTi û−iR (λ)

)2
(13)

=
1

n

n∑
i=1

(
yi − zTi ûR(λ)

1− [hλ]ii

)2

(14)

=
1

n
yT (In −Hλ)(diag(In −Hλ))−2(In −Hλ)y, (15)

where Hλ = ZZT (ZZT + λIn)−1 = Z(ZTZ + λIp)
−1ZT is the so-called hat

matrix because it transforms y into ŷ:

ŷ = Hλy = ZûR(λ).

An important point to notice is that this LOO is not a ”true” n-fold cross
validation because we standardize our data only once. For the more classical
n-fold cross validation we would standardize each training set separately and use
this standardization on the validation sample. While it may not look significant,
we will show later that this unique standardization has important consequences.

4.2.2 Computation of the GCV error

Generalized Cross validation ( GCV ) is an approximation of the LOO. First we
introduce some notion about circulant matrices.
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A matrix C is called a circulant matrix if it is of the form

C =


c0 c1 c2 · · · cn−1
cn−1 c0 c1 cn−2
cn−2 cn−1 c0 cn−3

...
. . .

...
c1 c2 c3 · · · c0

 ∈ Circ(n).

Such a matrix has constant diagonal coefficients. Let W ∈ On (C) an orthogonal
matrix such as [W]jk = 1√

n
e2πijk/n with j, k ∈ {1, ..., n}. Then W diagonalize

all circulant matrices i.e.

∀C ∈ Circ(n), ∃D ∈ Dn (C) / C = WDW∗

with ∗ the complex transpose operator.

The idea underlying GCV is to project the initial model in a well-chosen
complex space such that the matrix Hλ ∈ Circ(n). In this new model it is
straightforward to compute the inverse of diag(In −Hλ) needed in (15). This
will shorten the computational time.

Let Z = UDVT be the singular value decomposition (SVD) of Z with
U ∈ On (R), V ∈ Op (R) and D ∈Mn,p (R) a rectangular matrix with singular

values on the diagonal. Using left-multiplication of the initial model by WUT

WUTy = WUTZu+ WUTe.

Since U ∈ On(R) and W ∈ On(C) one can write∥∥∥WUTy−WUTZu
∥∥∥2
2

+ λ ‖u‖22 = (y− Zu)
T

UW∗WUT (y− Zu) + λ ‖u‖22

= ‖y− Zu‖22 + λ ‖u‖22

so λopt is the same in the two models.

The hat matrix in this new model is

H̃λ = (WUTZ)(WUTZ)∗
(

(WUTZ)(WUTZ)∗ + λIn

)−1
= (WDVT )(WDVT )∗

(
(WDVT )(WDVT )∗ + λWW∗

)−1
= WDDT (DDT + λIn)−1W∗ ∈ Circ(n)

We showed that H̃λ ∈ Circ(n) and we approximate ∀i ∈ J1, nK, [hλ]ii by

1

n
tr(H̃λ) =

1

n

n∑
k=1

d2k
d2k + λ

=
1

n
tr(Hλ).
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Applying this in the expression of errLOO we have

errGCV =

∥∥∥WUTy− H̃λy
∥∥∥2
2[

1
n tr
(
In − H̃λ

)]2
=

‖y− ŷ (λ)‖22[
1
n tr (In −Hλ)

]2 .
4.3 Practical choice of λ

4.3.1 A grid of λ for GCV

An important issue in ridge regression is the search for the optimal λ. A grid of
λ is often chosen empirically. In the context of the additive polygenic model, it
is possible to use the link between heritability and λ to determine a grid of λ:

{0.01, 0.02, ..., 0.99}︸ ︷︷ ︸
h2
G

→ {p1− 0.01

0.01
, p

1− 0.02

0.02
, ..., p

1− 0.99

0.99
}︸ ︷︷ ︸

λ

.

4.3.2 Using Singular Value Decomposition to speed-up GCV com-
putation

Applying GCV with n > p, we would compute ûR = (ZTZ + λIp)
−1ZTy using

for each λ and use it to make prediction. In the context of GWAS (i.e. p >> n),
this is not optimal since it implies the inversion of a p×p matrix. In our situation,
the dual solution of ridge regression is much more adapted, leading to:

ŷ (λ) = ZûR (λ) = ZZT
(
ZZT + λIn

)−1
y = Hλy. (16)

GCV can be rewritten for more efficient computation. Let Z = UDVT be
the singular value decomposition (SVD) of Z with U ∈ On (R), V ∈ Op (R) and
D ∈ Mn,p (R) a rectangular matrix with singular values on the diagonal, we

have ZZT = UDDTUT the eigen decomposition of ZZT . Rewriting Hλ using
the SVD and applying it to GCV leads to:

Hλ = U

[
DDT

(
DDT + λIn

)−1]
UT = UDλU

T , (17)

errGCV = bT (In −Dλ)

[
1

n
tr (In −Dλ) In

]−2
(In −Dλ) b, b = UTy. (18)

Assuming that we have access to the eigen-decomposition of ZZT , the GCV
computation as a function of diagonal matrices is extremely efficient. The most
time-consuming part is the eigen decomposition (or the SVD).
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4.4 Issue with empirical scaling in the high dimensional
case

In this section we highlight the issue of the LOO / GCV with ”naive” estimation
of the intercept using empirically scaled matrices in the high dimensional context
( n < p ). We first show why LOO does not work in this setup, then show
why GCV does not work either and briefly highlight the issue for the ”naive”
estimation of more general fixed effects.

In the following, we still consider the genotype matrix Z and the phenotype
vector y to be empirically scaled. One immediate consequence of this scaling is
∀i ∈ J1, nK, yi = −

∑
j 6=i yj and zi = −

∑
j 6=i zj . Since each row of Z is a linear

combination of the others, we also have 0 ∈ sp
(
ZZT

)
.

4.4.1 Constant eigenvectors associated with the null eigenvalue

Let w = α1n with α ∈ R. Since Z is normalized with the empirical scaling
ZTw = 0p → ZZTw = 0n = 0w so the eigenvectors associated with 0 are
constant.

Since we choose this eigenvector to have a unit norm, we have ‖w‖22 =

α2 ‖1n‖22 = α2n. In the end, w = 1√
n
1n or w = −1√

n
1n.

4.4.2 LOO standardization problem in a high dimensional setting

Let Z−i =



z1
...

zi−1
zi+1

...
zn


∈Mn−1,p (R), y−i =



y1
...

yi−1
yi+1

...
yn


and û−iR = ZT−i

(
Z−iZ

T
−i + λIn−1

)−1
y−i.

Then, we have ŷ−i(i) = zTi û
−i
R = −

∑
j 6=i z

T
j û
−i
R = −1TnZ−iZ

T
−i

(
Z−iZ

T
−i + λIn−1

)−1
y−i.

We assume the variants to be independent and can reasonably suppose that
the individuals are linearly independent when n < p. In that case Z−iZ

T
−i is

invertible in spite of empirical centering because the empirical centering includes
the i-th individual. We notice that when λ→ 0, ŷ−i(i)→ −

∑
j 6=i yj = yi. Then,

we easily show that
(
ŷ−i(i)− yi

)2 → 0 and errLOO →
λ→0

0.

Here we see the influence from the unique standardisation of this LOO :
because we used all individuals for standardization a phenomenon of dependency
appears between the training and validation sets. Have we used a classical n-fold
cross validation we would not have such dependencies, since the standardization
would only include the training set.
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4.4.3 GCV standardization problem in a high dimensional setting

Starting from GCV formula and assuming n < p

errGCV (y,Z, λ) =
1

n
yT (In −Hλ)

[
1

n
tr(In −Hλ)In

]−2
(In −Hλ)y

=
1

n
bT (In −Dλ)

[
1

n
tr(In −Dλ)In

]−2
(In −Dλ)b

where b = UTy and Dλ = DDT
(
DDT + λIn

)−1
.

Let d2n the null eigenvalue of ZZT thus obtained. Noticing that In−Dλ
d2n=0−−−→
λ→0

0
. . .

0
1

, we have
[
1
n tr(In −Dλ)In

]−2 d2n=0−−−→
λ→0

n2In.

We then have

errGCV (y,Z, λ)
d2n=0−−−→
λ→0

1

n
× n2bT


0

. . .

0
1

b = nb2n.

Using 4.4.1, b2n = 1
n (1n

Ty)2 and so

errGCV (y,Z, λ)
d2n=0−−−→
λ→0

(1n
Ty)2 = 0.

A similar issue can be observed in the presence of covariates. Let X ∈Mn,r(R)
the empirically scaled matrix of covariates. A ”naive” approach to take into
account those covariates would be to perform linear regression of the phenotypes
(which we assumed to be centered) on the empirically scaled covariates and then

to apply GCV on the residuals. Let β̂ the least square estimator, in this setup

errGCV (y−Xβ̂,Z, λ)
d2n=0−−−→
λ→0

(1n
Ty− 1nTXβ̂)2

= (0− 0)2

= 0.
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4.5 Projection-based approach for GCV with covariates
using QR decomposition

QR decomposition allows an easy construction of a contrast matrix. The QR
decomposition of A ∈Mn,r(R) is A = QR with Q ∈ O(n) and RT ∈Mr,n(R) =

[RT
1 ,0r,n−r] where R1 ∈Mr,r(R) is an upper triangular matrix.

Let Q = [Q1,Q2] with Q1 ∈Mn,r(R), Q2 ∈Mn,n−r(R) and observing that

QTQ =

(
QT

1

QT
2

)(
Q1 Q2

)
=

(
QT

1 Q1 QT
1 Q2

QT
2 Q1 QT

2 Q2

)
=

(
Ir Or,n−r

On−r,r In−r

)
,

we can show

QT
2 A = QT

2

(
Q1 Q2

)
R =

(
0n−r,r In−r

)( R1

0n−r,n

)
= 0n−r,r.

QT
2 is a contrast matrix since we have QT

2 A = 0n−r,r and QT
2 Q2 = In−r.

The QR decomposition of a matrix being relatively inexpensive to compute, this
proposed method offers an interesting alternative.

4.6 Link between random effects model and ridge regres-
sion

4.6.1 The case without fixed effects

Ridge regression and random effects model are closely linked. Starting by the
maximizing the posterior of the parameters of

y = Zu+ e

where u ∼ N (0p, τIp) and e ∼ N (0n, σ
2In). Our goal is to maximize

p(u|y) =
p(y|u)p(u)

p(y)

→log p(u|y) = log p(y|u) + log p(u)− log p(y).

Using the fact that u ∼ N (0p, τIp), y ∼ N (0n, τZZT + σ2In), y|u ∼
N (Zu, σ2In) and remembering the formula of the log-likelihood for a gaussian
distribution of parameters µ and Σ is

log p(x|µ,Σ) = −n
2

log 2π − 1

2
log |Σ| − (x− µ)TΣ−1(x− µ),

37



we can write

log p(u|y) =− n

2
log 2π − 1

2
log
∣∣σ2In

∣∣− 1

2
(y− Zu)T (σ2In)−1(y− Zu)

− p

2
log 2π − 1

2
log |τIp| −

1

2
(u− 0p)

T (τIp)
−1(u− 0p)

+
n

2
log 2π +

1

2
log
∣∣∣τZZT + σ2In

∣∣∣− 1

2
(y− 0n)T (τZZT + σ2In)−1(y− 0n).

By isolating the terms dependent on u, we obtain

log p(u|y) =− 1

2σ2

(
‖y− Zu‖22 +

σ2

τ
‖u‖22

)
+K⊥u

with K⊥u a term independent of u. After simplification we have

arg max
u

p (u|y) = arg min
u

‖y− Zu‖22 + λ ‖u‖22 with λ =
σ2

τ
. (19)

4.6.2 An extension for the mixed model

It is also possible to exhibit a link between mixed model (that is a random effects
model with additional covariates with non-random effects) and ridge regression
with some covariates we do not wish to penalize. Assuming the following model:

y = Xβ + Zu+ e

and denoting C a contrast matrix such that CX = 0n,r and CCT = In−r.

The left multiplication of the above by C gives

Cy = CXβ + CZu+ Ce = CZu+ Ce.

Noticing that Cy|u ∼ N (CZu, σ2In−r) and Cy ∼ N (0n−r, τCZZTCT +
σ2In−r) we can write the posterior of the contrasted model as

log p(u|Cy) =− 1

2

(
‖Cy−CZu‖22 +

σ

τ
‖u‖22

)
+K⊥u

and after simplification

arg max
u

p (u|Cy) = arg min
u

‖Cy−CZu‖22 + λ ‖u‖22 with λ =
σ2

τ
.

4.7 The proportion of causal variants does not impact her-
itability estimation

4.7.1 Estimation of heritability on synthetic data
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Figure 9: Distribution of (h2est−h2sim) for multiple parameter combinations with
30 replications. Data are simulated under the fully synthetic procedure. The
columns of the grid correspond to the fraction of causal variants while the lines
correspond to the ratio n/p. For each panel the horizontal axis corresponds to
the simulated heritability h2sim ∈ {0.1, ..., } and the vertical axis corresponds
to the estimation of h2g − h2sim. Heritability estimations are done with random
effects model using AI-REML to estimate the variance components and with
ridge regression using 3 approaches for the choice of λopt : GCV with a projection
correction and GCV with a 2nd dataset correction and a 10 fold cross validation
( Ridge 10fCV ).

4.7.2 Estimation of heritability on semi-synthetic data
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Figure 10: Distribution of (h2est − h2sim) for multiple parameter combinations
with 30 replications. Data are simulated under the semi-synthetic procedure.
The columns of the grid correspond to the fraction of causal variants while the
lines correspond to the ratio n/p. For each panel the horizontal axis corresponds
to the simulated heritability h2sim ∈ {0.1, ..., } and the vertical axis corresponds
to the estimation of h2g − h2sim. Heritability estimations are done with random
effects model using AI-REML to estimate the variance components and with
ridge regression using 2 approaches for the choice of λopt : GCV with a projection
correction and GCV with a 2nd dataset correction.

4.8 Approximation of predictive power

In this section we detail our approximation of the MSE and squared correlation.
In the following the index tr refers to the training set whereas te refers to the test
set. To lighten notations Z is the normalized genotype matrix of the training
set. Let zte ∈ Rp the column vector corresponding to the normalized genotypes
of one test individual. We assume Ezte [zte] = 0p and var(zte) = Ip.

We remind that û = ZT
(
ZZT + λIn

)−1
ytr =

(
ZTZ + λIp

)−1
ZTytr =

Kλytr. We assume the phenotype to have unit variance without loss of generality.

Lastly we remind that for x a random vector with E[x] = a and var(x) = V
we have for any matrix B E[xTBx] = tr(BV) + aTBa.
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4.8.1 Approximation of the mean squared error on the test set

Using the classic bias-variance decomposition and assuming Z fixed, we can
write

Eytr,yte,zte

[
(yte − ŷte)2

]
= Ezte

[
Eytr,yte|zte

[
(yte − ŷte)2

]]
= Ezte

[
var(yte|zte) + var(ŷte|zte) +

(
Eytr|zte [ŷte]− Eyte|zte [yte]

)2]
.

Firstly we have

Eyte,zte [yte] = Eyte,zte [zTteu+ ete] = EzTte [zte]u+ Eete [ete] = 0.

Eytr [yte] = yte.

Eyte,zte [ŷte] = Eyte,zte [zTteKλytr] = 0.

Eytr [ŷte] = Eytr [z
T
teKλytr] = zTteKλZu.

Developing the 3 terms of the bias-variance decomposition using the expected
value of a quadratic form we have

var(yte|zte) = Eyte|zte
[(
yte − Eyte|zte [yte]

)2]
= Eyte|zte

[
e2te
]

= σ2

var(ŷte|zte) = Eytr|zte
[
ŷ2te
]
− Eytr|zte [ŷte]

2

= Eytr|zte

[
yTtrK

T
λ ztez

T
teKλytr

]
− (Zu)TKT

λ ztez
T
teKλ(Zu)

= tr
(
KT
λ ztez

T
teKλσ

2In

)
+ (Zu)TKT

λ ztez
T
teKλ(Zu)

− (Zu)TKT
λ ztez

T
teKλ(Zu)

= σ2zTteKλK
T
λ zte(

Eytr|zte [ŷte]− Eyte|zte [yte]
)2

=
(
zTteKλ(Zu)− zTteu

)2
=
(
zTte (KλZ− Ip)u

)2
= zTte (KλZ− Ip)uu

T (KλZ− Ip) zte.

since (KλZ)T = (ZT (ZZT + λIn)−1Z)T = ZT (ZZT + λIn)−1Z = KλZ.

Applying the expectation over zte on those 3 terms

Ezte [var(yte|zte)] = σ2

Ezte [var(ŷte|zte)] = σ2tr
(
KλK

T
λ

)
Ezte

[(
Eytr|zte [ŷte]− Eyte|zte [yte]

)2]
= uT (KλZ− Ip)

2
u

= uT (KλZKλZ− 2KλZ + Ip)u.
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We first approximate the case n < p. Here we can reasonably suppose that
ZZT ' pIn since we are working on unrelated individuals and because of the
normalization of Z. Using this approximation one can write

ZZT ' pIn ⇒ Kλ '
1

p+ λ
ZT .

Replacing ZZT in the above expressions and using the link between ridge
regression parameter and heritability we have

Ezte [var(ŷte|zte)] = σ2tr
(
KλK

T
λ

)
' σ2tr

((
1

p+ λ
ZT
)(

1

p+ λ
ZT
)T)

= σ2

(
1

p+ λ

)2

tr
(
ZTZ

)
' σ2

(
1

p+ λ

)2

tr (pIn)

= σ2

(
1

p+ λ

)2

np

= (1− h2)(h2)2
n

p

and

Ezte
[(
Eytr|zte [ŷte]− Eyte|zte [yte]

)2]
= uT (KλZ− Ip)

2
u

= uT

((
1

p+ λ

)2

ZTZZTZ− 2

(
1

p+ λ

)
ZTZ + Ip

)
u

= p

(
1

p+ λ

)2

(Zu)T (Zu)− 2

(
1

p+ λ

)
(Zu)T (Zu) + uTu

' p
(

1

p+ λ

)2

nh2 − 2

(
1

p+ λ

)
nh2 + h2

=
n

p
(h2)3 − 2

n

p
(h2)2 + h2

= h2
(

1 +
n

p

(
(h2)2 − 2h2

))
.

Summing all those expressions, we end up with
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Eytr,yte,zte

[
(yte − ŷte)2

]
' 1− h2 + (1− h2)(h2)2

n

p
+ h2

(
1 +

n

p

(
(h2)2 − 2h2

))
= 1 + h2

(
−1 + (1− h2)h2

n

p
+ 1 +

n

p

(
(h2)2 − 2h2

))
= 1− n

p
(h2)2.

We now consider the case n > p. Here one the other hand we can reasonably
suppose that ZTZ ' nIp since we assume the genotypes to be independent and
again because of the normalization of Z. Using this approximation one can write

ZTZ ' nIp ⇒ Kλ '
1

n+ λ
ZT

First noticing the following algebra

n

n+ λ
=

n

n+ p 1−h2

h2

=

n
p

n
p + 1−h2

h2

=

n
p × h

2

n/p× h2 + (1− h2)
=

n
p × h

2

1 + h2 × (np − 1)

λ

n+ λ
=

p 1−h2

h2

n+ p 1−h2

h2

=
1− h2

n
p × h2 + (1− h2)

=
1− h2

1 + h2(np − 1)

and replacing ZTZ by nIp we now have

Ezte [var(ŷte|zte)] = σ2tr
(
KλK

T
λ

)
' σ2tr

((
1

n+ λ

)2

ZTZ

)

' σ2

(
1

n+ λ

)2

np

= σ2 1
n
p

(
n
p × h

2

1 + h2 × (np − 1)

)2
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Ezte
[(
Eytr|zte [ŷte]− Eyte|zte [yte]

)2]
= uT (KλZKλZ− 2KλZ + Ip)u

' uT
((

1

n+ λ

)2

ZTZZTZ− 2

(
1

n+ λ

)
ZTZ + Ip

)
u

'
(

n

n+ λ
− 1

)2

uTu '
(

n

n+ λ
− 1

)2

h2

=

(
1− h2

1 + h2(np − 1)

)2

h2

Summing all those expressions, we end up with

Eytr,yte,zte

[
(yte − ŷte)2

]
' (1− h2)

1 + n
ph

2

1 + h2(np − 1)

In the end we have

Eytr,yte,zte

[
(yte − ŷte)2

]
'

{
1− n

p (h2)2 si n < p

(1− h2)
1+n

p h
2

1+h2(np−1)
otherwise.

(20)

4.8.2 Approximation of the mean squared error on the training set

We quickly remind our approximations

Hλ = ZKλ '

{
1

p+λZZT ' p
p+λIn ' h2In if n < p

1
n+λZZT otherwise.

Assuming Z is fixed and writing the expectation over ytr of the mean squared
error on the training set, we have

Eytr

[
1

n
(ytr − ŷtr)

T (ytr − ŷtr)

]
= Eytr

[
1

n
yTtr(In −Hλ)2ytr

]
=

1

n

(
tr((In −Hλ)2 × σ2In) + (Zu)T (In −Hλ)2(Zu)

)
.

The focus is the approximation of (In −Hλ)2 :

(In −Hλ)2 '

{
(1− h2)2In if n < p

In − 2× 1
n+λZZT +

(
1

n+λ

)2
ZZTZZT ' In − 2

n+λZZT + n
(n+λ)2 ZZT else.
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The approximation is straightforward for n < p. We thus focus on the n > p
case.

tr

(
In −

2

n+ λ
ZZT +

n

(n+ λ)2
ZZT

)
= n− 2

n+ λ
tr(ZZT ) +

n

(n+ λ)2
tr(ZZT )

' n− 2p
n

n+ λ
+ p

(
n

n+ λ

)2

(Zu)T (Zu) ' nh2

(Zu)T (− 2

n+ λ
ZZT )(Zu) = − 2

n+ λ
uTZTZZTZu ' −2n

n

n+ λ
uTu ' −2n

n

n+ λ
h2

(Zu)T (
n

(n+ λ)2
ZZT )(Zu) =

n

(n+ λ)2
uTZTZZTZu ' n

(
n

n+ λ

)2

h2.

Factorizing those results according to n
n+λ and

(
n

n+λ

)2
and using the algebras

described above we end up with

Eytr

[
1

n
(ytr − ŷtr)

T (ytr − ŷtr)

]
'

{
(1− h2)2 if n < p

1− 2 n
n+λ

(
p
n (1− h2) + h2

)
+
(

n
n+λ

)2 (
p
n (1− h2) + h2

)
otherwise.

4.8.3 Approximation of the squared correlation on the test set

Here we will explain our approximation of the correlation between the phenotype
and the prediction. Assuming Z is fixed, the correlation is

corr(ŷte, yte) =
covytr,yte,zte(yte, ŷte)√

varytr,yte,zte [yte]
√

varytr,yte,zte [ŷte]
.

Estimating each of those 3 terms:

varytr,yte,zte [ŷte] = Eytr,yte,zte [ŷ
2
te]− Eytr,yte,zte [ŷte]

2

= Eytr,yte,zte [z
T
teKλytry

T
trK

T
λ zte]− Eytr,yte,zte [z

T
teKλytr]

2

= EytrEyte,zte|ytr [z
T
teKλytry

T
trK

T
λ zte]− EytrEyte,zte|ytr [z

T
teKλytr]

2

= Eytr [tr(Kλytry
T
trK

T
λ ) + 0]− 0

= Eytr [y
T
trK

T
λKλytr]

= tr(KT
λKλ × σ2In) + (Zu)TKT

λKλ(Zu)
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Figure 11: Theoretical quadratic error on the training set with respect to the
log ratio of the number of individuals over the number of variants in the training
set. Each curve corresponds to a given heritability (in the narrow sense). Note
that the total variance is assumed to be 1.

46



covytr,yte,zte(yte, ŷte) = Eytr,yte,zte [(yte − Eytr,yte,zte [yte])(ŷte − Eytr,yte,zte [ŷte])]

= Eytr,yte,zte [(yte − Eytr,yte,zte [z
T
teu+ ete])(ŷte − Eytr,yte,zte [z

T
teKλytr])]

= Eytr,yte,zte [(yteŷte)]

= Eyte,zteEytr|yte,zte [ytez
T
teKλytr]

= Eyte,zte [ytezTteKλZu]

= Eyte,zte [zTteKλZu(uT zte + eTte)]

= Eyte,zte [zTteKλZuu
T zte] + Eyte,zte [zTteKλZu× eTte]

= tr(KλZuu
T ) + 0 + 0

(
zTte ⊥ ete, E[ete] = 0

)
= uTKλZu

varytr,yte,zte [yte] = Eytr,yte,zte [y
2
te]− Eytr,yte,zte [yte]

2

= Eyte,zte [(zTteu+ ete)
2]− 0

= Eete,zte
[
(zTteu)2

]
+ Eete,zte

[
(ete)

2
]

+ 2Eete,zte
[
(zTteu)ete

]
= Ezte [zTteuuT zte] + Eete [e2te] + 2Ezte [zTteu]Eete [ete]
= uTu+ σ2 + 0

We replace the empirical covariance matrices by their respective approxima-
tion according to the cases n < p and n > p.

The n < p case :

ZZT ' pIn ⇒ Kλ '
1

p+ λ
ZT ⇒ KT

λKλ '
(h2)2

p
In

σ2 × tr(KT
λKλ) ' n

p
(h2)2(1− h2)

(Zu)TKT
λKλ(Zu) ' (h2)2

p
(Zu)T (Zu) ' n

p
(h2)2 × h2

uTKλZu ' uT
1

p+ λ
ZTZu ' 1

p+ λ
nh2 =

n

p
(h2)2

The n > p scenario :

ZTZ ' nIp ⇒ Kλ '
1

n+ λ
ZT ⇒ KT

λKλ '
(

1

n+ λ

)2

ZZT
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tr(KT
λKλ × σ2In) ' (1− h2)

(
1

n+ λ

)2

tr(ZZT ) ' (1− h2)
n

(n+ λ)2
p = (1− h2)

(
n

n+ λ

)2
p

n

(Zu)TKT
λKλ(Zu) ' 1

(n+ λ)2
uTZTZZTZu '

(
n

n+ λ

)2

uTu '
(

n

n+ λ

)2

h2

uTKλZu '
n

n+ λ
h2

Concatenating those expressions, we eventually get:

corr(ŷte, yte) '


n
p (h

2)2√
n
p (h

2)2
√
1

=
√

n
ph

2 if n < p
n

n+λh
2√

( n
n+λ )

2
( pn (1−h2)+h2)

√
1

= h2√
p
n (1−h2)+h2

, otherwise.
(21)
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