
CLUSTERING OF SPATIALDATABYTHE EMALGORITHMC. AMBROISE , M. DANG AND G. GOVAERTUniversit�e de Technologie de Compi�egneURA CNRS 817BP 529 F-60205 Compi�egne cedex - FranceAbstract.A clustering algorithm for spatial data is presented. It seeks a fuzzypartition which is optimal according to a criterion interpretable as a pe-nalized likelihood. We propose to penalize the energy function exhibitedby Hathaway (1986) with a term taking into account spatial contiguityconstraints. The structure of the EM algorithm may be used to maximizethe proposed criterion. The Maximization step is then unchanged and theExpectation step becomes iterative. The e�ciency of the new clusteringalgorithm has been tested with biological images and compared with otherclustering techniques. 11. IntroductionWhen classical clustering techniques are used for partitioning spatial data,the resulting classes will often be geographically very mixed. To avoid thisphenomenon, the spatial information of the data has to be taken into ac-count. Very di�erent solutions to this problem have been proposed in theliterature.A natural approach consists in using the geographical coordinates of theindividuals, more or less heavily weighted, as an additional pairs of variates- see Berry (1966) or Jain and Farrokhnia (1991).1This paper is published in the proceedings of geoENV96 conference, Lisbon, Portugal,November 20-22, 1996. It can be referenced as: Ambroise, C., Dang, M. and Govaert, G.(1997). Clustering of spatial data by the EM algorithm. In geoENV I - Geostatistics forEnvironmental Applications, A. Soares, J. G�omez-Hernandez and R. Froidevaux (eds),493{504. Quantitative Geology and Geostatistics, vol. 9. Kluwer Academic Publisher.



454 C. AMBROISE, M.DANG AND G.GOVAERTAnother approach groups individuals which are both similar and con-tiguous (Legendre 1987, Openshaw 1977). This implies the de�nition of aneighborhood concept. De�ning neighborhood relationships is equivalentto building a graph where each element is represented by a node and eachneighborhood relationship is an edge. Clustering with spatial contiguityconstraints can be described as the succession of two steps:1. The de�nition of a neighborhood graph. This can be done with stan-dard algorithms such as a Delaunay triangulation (Green and Sibson1977) or a Gabriel graph (Gabriel and Sokal 1969).2. Running of a clustering algorithm while respecting the constraints.Many classical clustering algorithms may be modi�ed to take into ac-count the constraints which are summarized by the graph. In Lebart(1978) a classical hierarchical clustering algorithm is adapted.These procedures produce classes made of adjacent sites. They may sep-arate into di�erent classes individuals which are very similar, if they aregeographically far apart.Oliver and Webster (1989) propose to run clustering algorithms basedon a modi�ed dissimilarity matrix. This modi�ed matrix is a combination ofthe matrix of geographical distances and the dissimilarity matrix computedfrom the non geographical variables. This kind of procedure seems to workwell but has no statistical justi�cation.Other spatially constrained clustering methods and approaches havebeen developed in the �eld of unsupervised image segmentation (Ripley1988). The speci�city of these methods is that they deal with pixels andtheir regular grid structure. An image may well be considered as a regularlattice of pixels. In this case, the computation of the neighborhood graphis immediate. The most common choices for the neighborhood graph arethe 4 neighbor graph (horizontal and vertical adjacencies only) and the 8neighbor (including diagonals).There are numerous unsupervised image segmentation algorithms. Inthis paper, we consider only statistically based methods. In this framework,the Bayesian approach proposes solutions which may be separated into twofamilies (Masson and Pieczinsky 1993):1. The local methods make assumptions about the pixel or about smallgroups of adjacent pixels called \context" (Masson and Pieczinsky1993).2. The global methods make assumptions about the whole image andgenerally use a Markov random �eld model (Geman and Geman 1984,Besag 1974).Notice that the classes obtained with these methods di�er from thoseobtained with hard contiguity constrained algorithms: a class does not nec-essarily form a single patch on the image. Pixels of the same class may be



CLUSTERING OF SPATIAL DATA BY THE EM ALGORITHM 455present in di�erent parts of the image. Thus the statistical models used inunsupervised segmentation algorithms take the contiguity constraints intoaccount but do not impose \one region classes".We develop in this paper a new statistical method for spatial clusteringwhich is based on the EM algorithm (Dempster et al. 1977) and takes intoaccount the spatial constraints without requiring a partition made of \oneregion classes". Next section describes the principle of the proposed algo-rithm. Section 3 relates this method to statistical image segmentation tech-niques based on Markov Random Fields. Section 4 illustrates the method'sperformance on the segmentation of a biological gray-level image. The con-cluding section evocates aspects of this approach that are currently underinvestigation or seem to be worth of further study.2. Introducing Spatial Constraints in the EM Algorithm2.1. MIXTURE ESTIMATION BY THE EM ALGORITHMIn cluster analysis based on Gaussian mixture models (Celeux and Govaert1995), data are IRd-valued vectors x1; :::xn assumed to be an identicallyindependently distributed (i.i.d.) sample from a mixture of K normal dis-tributions: f(xij�) = KXk=1 pkfk(xij�k;�k); (1)where the pk are the mixing proportions (for k = 1; : : : ; K; 0< pk < 1, andPk pk = 1), and fk(xj�k ;�k) denotes the density of a Gaussian distributionwith mean vector �k and variance matrix�k. This model also assumes thatthe unobserved vector of labels, z = (z1; : : : ; zn), is an i.i.d. sample of themultinomial distribution:for 1 � i � n; 1 � k � K; P (Zi = k) = pk:The EM algorithm is often used to estimate the unknown parametersof the mixture (Dempster et al. 1977). It produces a set of parameters thatmaximizes locally the log-likelihood of the sample, de�ned asL(�) = nXi=1 log f(xi):The principle of the EM algorithm consists in building a sequence of es-timates �0; �1; : : : ; �m; over which the log-likelihood monotonically in-creases (for all m, L(�m+1) � L(�m)). The basic idea in EM is to choose�m+1 from �m that globally maximizes the expectation de�ned asQ(�j�m) �= Xz P (zjx; �m) logP (x; z; �)



456 C. AMBROISE, M.DANG AND G.GOVAERT= NXi=1 KXk=1 log(pkfk(xi))P (Zi = kjxi; �m) 0@ formixturemodels 1A (2)Thus, starting from an arbitrary value �0, iteration (m+ 1) of the EMalgorithm can be divided in 2 steps:| E-step (Expectation): computation of the components ofQ(�j�m) that do not depend on �;| M-step (Maximization): search �m+1 = argmax�Q(�j�m).In the case of mixture models, the E-step computes� tm+1ik �= P (Zi = kjxi; �m) = pmk fk(xij�mk ;�mk )f(xij�m) � 1�i�n1�k�K : (3)For a gaussian mixture, the M-step yields, for k = 1; : : : ; K�m+1k = 1nk nXi=1 tm+1ik xi (4)�m+1k = 1nk KXk=1 nXi=1 tm+1ik (xi � �m+1k )(xi � �m+1k )t (5)pm+1k = nkn (6)where nk =Pni=1 tm+1ik .2.2. THE EM ALGORITHM AS A FUZZY CLUSTERING METHODAs Hathaway (1986) highlighted it, the EM algorithm in the case of mixturemodels is formally equivalent to an alternate optimization of functionD(c;�) �= KXk=1 nXi=1 cik log(pkfk(xij�k;�k))� KXk=1 nXi=1 cik log(cik) (7)where c = (cik)i=1;n k=1;K de�nes a fuzzy classi�cation, cik representingthe grade of membership of xi to class k (0 � cik � 1, PKk=1 cik = 1,Pni=1 cik > 0, 1 � i � n; 1 � k � K).To see this, consider the following grouped coordinate ascent on function(7): starting from a given set of initial parameters, �0, criterion D(c;�) isalternatively optimized over the possible values of the classi�cation matrixc with �xed mixture parameters, then over the possible values of mixture



CLUSTERING OF SPATIAL DATA BY THE EM ALGORITHM 457parameters � with a �xed classi�cation matrix. Thus, iteration (m+ 1) ofthis alternate optimization algorithm consists of two steps:\E"-step: The classi�cation matrix is updated in order to maximizecriterion cm+1 = argmaxc D(c;�m):Let us write the Lagrangian of D(c;�m) that takes into account the con-straints PKk=1 cik = 1; 8i:D(c) = D(c;�m) + nXi=1 �i  KXk=1 cik!� 1! ; (8)where the �i are the Lagrange coe�cients corresponding to the constraints.The necessary conditions of optimality yield:( @D@cik = log (pmk fk(xij�mk ;�mk ))� 1� log cik + �i = 0PKk=1 cik = 1which can also be written as:( cik = exp f�1 + �i + log (pmk fk(xij�mk ;�mk ))gPKk=1 exp f�1 + �i + log (pmk fk(xij�mk ;�mk ))g = 1:The following values are obtained for the cm+1ik :cm+1ik = pmk fk(xij�mk ;�mk )f(xij�m) : (9)which is clearly identical to EM's E-step for mixture models (3).\M"-step: The parameters are reestimated according to�m+1 = argmax� D(cm+1;�):However, combining (2) with (3), and (7) with (9), it can be seen thatD(cm+1;�) = Q(�j�m)� KXk=1 nXi=1 cm+1ik log(cm+1ik )| {z }independent of �so that the same �m+1 is obtained as in the M-step of the EM algorithm.



458 C. AMBROISE, M.DANG AND G.GOVAERTSince this scheme yields the same calculations as EM applied to mix-tures, the latter can be viewed as an alternate optimization method of crite-rion D(c;�). The criteria themselves are related by L(�m) = D(cm+1;�m).This interpretation makes clearer the relationships between EM and otherclustering techniques, which often optimize criteria very similar to D(c;�)(Celeux and Govaert 1995).2.3. PENALIZATION OF HATHAWAY'S CRITERIONWe propose to regularize Hathaway's criterion (7) with a term which takesinto account the spatial information relative to the data. Let V be the\neighborhood matrix":vij = � � > 0 if xi and xj are neighbors0 if xi and xj are not neighbors:To compute the matrixV, one can use the graph structure described in theintroduction, or a function of the spatial distance between the elements ofthe data set.The regularizing term we propose is the following:G(c) = 12 KXk=1 nXi=1 nXj=1 cik:cjk:vij: (10)The more the classes contain adjacent elements, the greater this term is.Notice that G(c) is only function of the classi�cation matrix. The newcriterion we consider is then:U(c;�) = D(c;�)+ �:G(c) (11)where the coe�cient � � 0 gives more or less weight to the spatial homo-geneity term relatively to D(c;�).A modi�ed version of the EM algorithm can be used to maximize thiscriterion. We named this version Neighborhood EM algorithm (NEM). Sincethe new regularizing term does not contain any parameter of the mixture,the Maximization step remains unchanged. The Estimation step (maxi-mization of the criterion relatively to the classi�cation matrix with �xedmixture parameters) changes:1. Initialization: a neighborhood matrix V is computed according to thespatial relationship; arbitrary initial values are chosen for the param-eters of the mixtures �(0) as well as for the classi�cation matrix, c(0),(n lines, K columns).2. At each iteration the followings steps are realized until convergence:



CLUSTERING OF SPATIAL DATA BY THE EM ALGORITHM 459(a) E-step: cm+1 = argmaxc U(c;�m):The necessary conditions of optimality take the following form:( @U@cik = log (pmk fk(xij�mk ;�mk )) + 1� log cik + �i + �Pnj=1 cjkvijPKk=1 cik = 1which may be written as( cik = exp flog(pmk fk(xij�mk ;�mk )) + 1 + �i + �Pnj=1 cjkvijgPKk=1 exp flog(pmk fk(xij�mk ;�mk )) + 1 + �i + �Pnj=1 cjkvijg = 1:Finally we get the following equation:cm+1ik = pmk fk(xij�mk ;�mk ) � expf�Pnj=1 cm+1jk vijgPK̀=1 pm̀f`(xij�m̀;�m̀) � expf�Pnj=1 cm+1j` vijg (12)which suggests an iterative computing algorithm of the form c =g(~c), where ~c is the old classi�cation matrix. From a practicalpoint of view, a few iterations produce a reasonable new classi�-cation matrix c, which can be used for the next M-step.(b) M-step: �m+1 = argmax� U(cm+1;�)= argmax� D(cm+1;�):Thus, to compute the parameters of the mixture, one can use thesame formulae as in the M-step of the EM algorithm.Empirically the NEM algorithm converges with all tested problems, butno proof of local convergence is available yet.At each iteration the spatial information modi�es the partition accord-ing to the importance of the � coe�cient. The Estimation step smoothesthe map of the labels.The preceding algorithm solves two di�erent tasks which are highlydependent: it estimates the parameters of the mixture and �nds a partition.The two tasks are performed at the same time.2.4. HARD PARTITIONThe NEM algorithm may be easily adapted to seek a hard partition (cik 2f0; 1g):



460 C. AMBROISE, M.DANG AND G.GOVAERT� The easiest way is to consider the fuzzy partition obtained at the con-vergence, and to assign each individual i to the most probable classaccording to the a posteriori probabilities, i.e. the class k that maxi-mizes cik.� As in the CEM algorithm (Celeux and Govaert 1992), it is possible toadd an intermediate classi�cation step between the E and the M step.3. A Bayesian InterpretationNotice that it is possible to have a Bayesian interpretation of the NEMalgorithm. Maximizing the criterion U(c;�) is equivalent to maximizingexpfU(c;�)g = expfD(c;�)g � expf� �G(c)g: (13)We may write expf� �G(c)g / P (c) (14)where P (c) is a Gibbs distribution with energy function �� �G(c). On theother hand, the expression expfD(c;�)g may be interpreted as P�(xjc),the conditional density of the sample x, knowing the classi�cation matrixc, with parameters � characterizing the Gaussian mixture. Thus,expfU(c;�)g / P (c) � P�(xjc)/ P�(cjx)where P�(cjx) is the posterior distribution of the classi�cation matrix c.Maximizing U(c;�) is equivalent to �nding the matrix c that maximizesthe posterior distribution P�(cjx), which is a Gibbs distribution with en-ergy function �U . Thus, the NEM algorithm may be interpreted as analgorithm that searches the maximum a posteriori (MAP) estimate of theclassi�cation matrix c.This Bayesian interpretation assumes that there are two random �elds:X = fXs; s 2 Sg, which is the observed random �eld and C = fCs; s 2 Sg,which is the random �eld corresponding to the classi�cation matrix (S is theset of sites). The Xs take their values in IRd and the Cs = (Cs1; � � � ; CsK)in a subset of [0; 1]K. Both �elds X and C follow Gibbs Distributions.This approach may be used in image segmentation and provides an al-ternative to the existing unsupervised fuzzy segmentation algorithms (Kentand Mardia 1991, Caillol et al. 1993).In the case of a hard classi�cation matrix, i.e. the Cs = (Cs1; � � � ; CsK)are random variables which take their values in f0; 1gK, and with the fol-lowing neighborhood matrix:



CLUSTERING OF SPATIAL DATA BY THE EM ALGORITHM 461vij = � 1 if xi and xj are neighbors0 if xi and xj are not neighbors;the a priori distribution of the classi�cation matrix is a Markov RandomField model very frequently used in image segmentation (Strauss 1977,Besag 1986):P (C = c) = 1Z expf�G(c)g= 1Z expf�Xi<j vij(ci � cj)g= 1Z expf�(#neighbors belonging to the same class)gwhere Z is a normalizing constant.4. An Application to Biological ImagesA sample of living cells is laid on a nutritive substance. After a few daysnew living cells appear and form a thin but visible layer around the originalsample. Biologists are interested in determining the surface of the new layer.We have a collection of images of size 512 by 512 2 of such experimentalresults and present here the analysis of a representative image.We aim to distinguish three di�erent kinds of patterns, in order todetermine automatically the size of the area covered by the new cells. A\good" segmentation from the biologist point of view should separate theimage in three di�erent areas representing:� the original sample;� the nutritive substance;� the new cells.We have tested three di�erent algorithms:� the classical EM algorithm, which does not take into account the spa-tial information;� the Gibbsian EM algorithm (Chalmond 1989); this unsupervised seg-mentation method applies the principle of EM to a Markov random�eld model for the labels Z, and an independant distribution of dataX conditionally on Z; here, the computation of Q(�j�m) in the E-steprequires to simulate the posterior distribution of Z conditionnally onx; this simulation is achieved by a Gibbs sampler (Geman and Geman1984);2We are indebted to Eugenio Grapa, from the Universit�e de Technologie de Com-pi�egne, Laboratoire de biologie cellulaire exp�erimentale, for the biological pictures



462 C. AMBROISE, M.DANG AND G.GOVAERT(a) Original image (d) Neighborhood EM with � = 0:5
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500Figure 1. Segmentation of a biological image by di�erent algorithms� the proposed version of the EM algorithm, which maximizes the pre-viously de�ned penalized likelihood.In these experiments, the algorithms were initialized by a \histogram"method, often used in gray level image segmentation. This method consistsin clustering the pixels by thresholding the histogram of the gray levels.



CLUSTERING OF SPATIAL DATA BY THE EM ALGORITHM 463The thresholds are computed in order to have K classes of equal size. Theclustering obtained in this way serves as an initial partition to start thealgorithms.On the original image (Figure 1(a)), the human vision distinguishesclearly the three classes. In fact, each class is far from having an uniformgray level: some pixels representing the new cells have exactly the same coloras the nutritive substance pixels. While the human eyes automatically makethe necessary adjustments, the unsupervised segmentation of this kind ofimage is more di�cult than one could think at �rst.The EM algorithm isolates the nutritive substance, but tends to emptythe class corresponding to the original sample (Figure 1(b)) .The Gibbsian EM algorithm does not make any distinction between thenew cells and the nutritive substance (Figure 1(c)).The NEM algorithm was tested with di�erent values for the parameter� (Figure 1(d)-(f)). When the parameter is very small, the same results areobtained as with the EM algorithm. This seems to be logical, because if weset � to zero, NEM becomes the classical EM algorithm. When � = 0:5,the result is very satisfying and allows the automatic computation of thesurface covered by the new cells. If we try to run NEM with greater valuesof the parameter, the spatial information becomes preponderant and thesegmentation does not make a lot of sense.5. DiscussionThe preceding example showed the practical e�ciency of the proposed algo-rithm on this particular problem. We tested the NEM algorithm on othersegmentation tasks and got regularly good results once the � parameterwas tuned.The algorithm was also applied to cluster a data set consisting of socio-economical indices on a set of adjacent counties. The �rst results are encour-aging. Further experiments should test the performance of the algorithmon other spatial data which have an irregular lattice structure.The main di�culty in applying the NEM algorithm consists in decidingon the value of �. In this problem we validate the value using our knowl-edge of what the \good" solution should look like. It would be easier to havean automatic estimation of this parameter. To this purpose, the estimationmethods that were developed in the framework of image segmentation couldbe a source of inspiration (Chalmond 1989, Younes 1989, Pieczynski 1994).However, since most of these methods were speci�cally designed for a reg-ular grid structure of the sites, they would need to be adapted to work onirregularly distributed spatial data.Theoretical results on the convergence properties of NEM have beenrecently established. They will be published in a forthcoming paper.
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