
Journal of Classification 13:299-313 (1996) 

Constrained Clustering and Kohonen Self-Organizing Maps 

Christophe Ambroise 

URA CNRS 817 

G6rard Govaert 

URA CNRS 817 

Abstract: The Self-Organizing Feature Maps (SOFM; Kohonen 1984) algorithm 

is a well-known example of unsupervised learning in connectionism and is a clus- 

tering method closely related to the k-means. Generally the data set is available 

before running the algorithm and the clustering problem can be approached by an 

inertia criterion optimization. In this paper we consider the probabilistic approach 

to this problem. We propose a new algorithm based on the Expectation Maximiza- 

tion principle (EM; Dempster, Laird, and Rubin 1977). The new method can be 

viewed as a Kohonen type of EM and gives a better insight into the SOFM accord- 

ing to constrained clustering. We perform numerical experiments and compare our 

results with the standard Kohonen approach. 

Keywords: EM algorithm; Gaussian mixture; Kohonen maps; Constrained cluster- 

ing. 

1. Introduction 

In the field of neural networks there are two main directions of 

research. The biologist tries to understand real biological computations, and 

the engineer borrows some biological concepts to design new pattern recogni- 

tion algorithms. Kohonen Self-Organizing Feature Maps (Kohonen 1982) are 
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closely modeled after neurobiological structures. This robust method can be 

used either for cluster analysis or for dimensionality reduction. 

This paper extends some ideas of Kohonen to the EM algorithm family 

(Dempster, Laird, and Rubin 1977; Celeux and Diebolt 1985; Celeux and 

Govaert 1992). We first introduce the SOFM algorithm in a clustering context 

and then show how it is related to the classical k-means (MacQueen 1967) 

and the probabilistic approach of clustering (Wolfe 1970). In Section 3 we 

present a new algorithm, which combines the Kohonen idea of neighborhood 

interaction function and the structure of the Classification EM algorithm 

(Celeux and Govaert 1992). The algorithm integrates the topology preserva- 

tion property of the SOFM and can be viewed as a Topology Preserving EM 

algorithm (TPEM). Its convergence is demonstrated and a stochastic version 

of TPEM (STPEM) is proposed. Section 4 is devoted to numerical experi- 

ments to compare the practical behavior of SOFM, CEM, and TPEM. 

2. Kohonen Self-Organizing Maps and CEM Algorithms 

2.1 Self-Organizing Feature Maps Algorithm 

The Kohonen model takes its inspiration from the adaptative formation 

of topology-conserving neural projection in the brain. Its aim is to generate a 

mapping of a set of high-dimensional input signals onto a one- or two- 

dimensional array of formal neurons. Each neuron becomes representative of 

some input signals such that the topological relationship between input sig- 

nals in the input space is reflected as faithfully as possible in the arrangement 

of the corresponding neurons in the array (also called output space). When 

using this method for clustering, it is possible either to match each neuron 

with a unique cluster or to match many neurons to one cluster. In the latter 

case the Kohonen algorithm produces a reduced representation of the original 

data set, and clustering algorithms may operate on this new representation 

(Murtagh 1995). When using the term "clustering" in this paper, we refer 

only to the case where a unique neuron corresponds to one cluster. 

In a clustering framework, constraining the topology may have some 

advantages: In image segmentation for example, it is possible to use the 

topological relationship to represent two close classes by two close colors, 

and this kind of segmentation may facilitate the interpretation of the seg- 

mented image (Tomasini 1993). Another field where topology preservation 

has proved to be of practical interest is vector quantization: Luttrel (1990) 

showed that topographic mappings arise naturally in a 2-stage vector quan- 

tizer whose output is made robust with respect to various types of distortion. 

The Kohonen Self-Organizing Feature Maps method is often imple- 

mented as an adaptive algorithm. This means that at each iteration a unique 
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input sample which is a d-dimensional vector, xi, from the data set, is taken 

into account to update the weight vector of some neurons. Let us describe this 

algorithm below: 

1. Some parameters have to be initialized: An array of neurons is 

defined. Each neuron k has a location rk in the output space and is 

represented by its weight vector ~t k in the input space. The weight 

vectors are randomly initialized. An initial learning step or(0) is 

chosen. A neighborhood interaction function h(k,l) is chosen. It is a 

function of the array distance dkz = Ilrk -rt[I. h(k,1) = 1 when k = l 

and decreases to zero as I[rk -- r t II increases. 

A box function may be used as neighborhood interaction func- 

tion: 

10 ifdkl<(~m; 
h(k,l) = otherwise, (1) 

where (~m is the width of the neighborhood taken into account at 

iteration step m. 

2. For each iteration, the following steps are executed unless a stopping 

condition is reached: 

(a) A d-dimensional input pattern, xi, is randomly chosen and 

presented to the interconnected network of neurons. 

(b) The best matching unit (BMU) is located: 1 

k* = argmink I[xi - btk [1. (2) 

(c) The matching of the unit and its neighbors is increased: 

Ilk(m + 1) = ~tk(m ) + O~(m)" h(k,k *). [xi - ~k(m)]  V k ,  

where k* is the index of the best matching unit, h(k,k*), the 

neighborhood interaction function and or(m), a decreasing 

learning step, satisfying the stochastic approximation condi- 

tions (see Benveniste, Metivier, and Priouret 1987, ch. 1, p. 

32): 

o o  o o  

]~ or(m)= ~, and ]~ ot(m)2 < o.. 

m--1 m=l 

l .  The argmin function returns the value of the index vector which minimizes the argument. 
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Kohonen (1991) relates his algorithm to the theory of stochastic 

approximation (Robbins and Monroe 1951). Note that h(k,k*) is defined and 

unique in the input space except when an input pattern xi has exactly the 

same distance from two or more ~tk. But considering the subset of the input 

space where the neighborhood interaction function is uniquely defined, the 

update rule (3) may be derived from the following potential: 

E = ]~ Z h(k,k*).l[xi  - ~tk[~, (4) 
xi~S ~tk~A 

where S is a finite samples set, A the array of formal neurons, and 

k* = argminkllXl - ~tkll. 

From a standard optimization point of view, the algorithm minimizes an 

inertia criterion. It is possible to formulate this optimization problem with 

different clustering approaches: In traditional partitioning, a finite set of sam- 

ples S = {Xl .... x,,} is partitioned into K classes. The cluster centers (proto- 

types, weights) are denoted ~ta . . . . .  ~tk. The quality of the partition is meas- 

ured by a criterion. A well-known example of partitioning method is the k- 

means algorithm (MacQueen 1967), which minimizes the within-class sum of 

squared errors criterion: 

W= Z Z Uik'llXi--~tkl~ ' (5) 
xi~S ~tkaA 

where uik are the membership coefficients (u/k = 1 when xi is member of the 

k-th class; Uik = 0 otherwise). 

If we consider a zero-neighbor interaction function, h(k , l )=  fi(k,l) 

(where ~(k,l) is the Kronecker delta function), the potential E of Equation 4 is 

reduced to within-class sum of squared errors criterion (Equation 5), and we 

can write: 

h(k,k *) -- blik* . (6) 

In this context, h(k,argminl [Ixi - It t [[) is interpreted as the membership of xi in 

the k-th cluster. 

2.2 The Classification EM Algorithm 

In cluster analysis based on Gaussian mixture models, data are/~a_ 

valued vectors Xl . . . . .  xn assumed to be a sample from a mixture of densities: 

K 
f(x) = Z pk �9 (xl tk,Zk), (7) 

k=l 

where the Pk are the mixing proportions (0 < Pk < 1, for all k = 1 .... K and 

]~kp k = 1), and ~ (xl~tk,Zk) denotes the density of a Gaussian distribution 
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with mean vector ~t k and variance matrix Ek. A possible classification cri- 

terion may be: 

K n 
CIVIL (U,0) = ~ Z gik log (pk~(X i  I~tk,ED). (8) 

k=l i=1 

Celeux and Govaert (1992) show that maximizing the CML criterion 

for a Gaussian mixture with equal mixing weights and a common covariance 

matrix of the form ozI  (t~ 2 unknown) is equivalent to minimizing the within- 

class sum of squared errors criterion. 

The CML criterion can be optimized by making use of an EM algo- 

rithm classification version, the so-called CEM algorithm (Celeux and 

Govaert 1992), which is briefly described below: 

1. Data are randomly partitioned into K classes. An initial classification 

matrix U ~ -- [u~ is computed. 

2. For each iteration the following steps are executed unless a stopping 

condition is reached: 

(a) E-step: The current conditional probabilities t~n(xi) that each xi 

belongs to the k-th cluster are computed: 

p~  �9 (xi I ~t~,E~') 
t~n (Xi) = (9) 

K m 
]~l--1 Pl q~ (xil~tT',ZT') 

(b) C-step: The updated partition is calculated by assigning each xi 

to the cluster which provides the current maximum conditional 

probability t~(xi). The classification matrix U n =  [u~] 

corresponding to this new partition is computed. 

(c) M-step: Find the mixture parameters which maximize CML: 

~lk n + l =  E n  m i=1 Igik Xi ; (10) 

]~n m 
i--1 uik 

K n 
Zk TM = E Z Ui~ (Xi -- ~n+l )  (Xi -- ~t~n+l)" ; (11) 

k=l i=1 

p~,+l _ ]~inl u~ (12) 
// 

We have shown that E and CML (Equations 4 and 8) criteria are both 

related to the within-class sum of squared errors criterion. The topological 

constraints in the E criterion are expressed using the coefficients h(k,l) (Equa- 

tion 1), which may be interpreted as membership coefficients, as is the case 

for the uik of the CML criterion. In the next section, we show how to intro- 

duce topological constraints in CEM using these membership coefficients. 
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3. Topological Constraints in CEM 

3.1 The Topology Preserving EM Algorithm 

The Topology Preserving EM (TPEM) algorithm proposed here is a 

generalization of Kohonen's "Batch Map" algorithm (Kohonen 1993). This 

new method is based on the CEM algorithm to optimize the CML criterion 

and finds a partition of the data into K classes and a relationship among these 

clusters. Like the SOFM algorithm, it can be used for clustering and dimen- 

sionality reduction. All the training samples are taken into account at each 

iteration, so this algorithm can be regarded as a batch version of the Kohonen 

algorithm. It integrates the idea of the neighborhood interaction function of 

the SOFM with the CEM algorithm. This function is used to compute the 

classification matrix U during the C-step of CEM: 

1. Data are randomly partitioned into K classes. An initial classification 

matrix U ~ = [u ~ is computed. An initial neighborhood width cr 0 and 

the location of the classes in the output space are defined. 

2. For each iteration the following steps are executed unless a stopping 

condition is reached: 

(a) E-step: The current conditional probabilities t~ (xi) that each 

xi belongs to the k-th cluster are computed according to Equa- 

tion 9. 

(b) C-step: Compute the classification matrix elements: 

uin~ = hm(k'kmax) , (13) 

]~--1 hm (l,kmax) 

where kmax = argmaxk (tk(xi)) and hm(k,l) is the neighboring 

function defined in Equation 1. 

This definition means that the matrix U m defines a fuzzy 

partition. Each xi belongs to many clusters: the cluster which 

provides the maximum posterior probability and its neighbor- 

ing clusters (in the sense of the neighboring function h).^ 

(c) M-step: The maximum likelihood estimates (~k,~tk,Ek) are 

computed using the k-th cluster as a subsample (1 < k < K). 

The preservation of the topology is induced by the neighborhood func- 

tion h, which takes into account proximity relationship in the output space. 

Kohonen (1984) suggests starting with a wide neighborhood and then letting 

this neighborhood shrink with the number of iterations. We have chosen a 

linear decay rule defined by ~m§ = a cy m (typically: 0.9 < a < 1). 
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It is possible to distinguish two phases in the evolution of the process: 

1. Qualitatively speaking, a self-organization phase first takes place, 

during which, the neighborhood function has an influence on the pro- 

cess. Quantitatively speaking, the width of the neighborhood is 

greater than one (~m > 1). 

2. There is a clustering phase. Quantitatively speaking, when the neigh- 

borhood width does not exceed one (~m < 1), the algorithm is exactly 

the same as CEM. If we consider the above defined linear function 

for shrinking the neighborhood, the topology preserving EM algo- 

rithm becomes CEM when the number of iterations is greater than 
log ~0 ] 
- - + 1  . 
log a 

As TPEM becomes CEM after a finite number of iterations and that CEM 

generates a converging (Urn, pro, ~tm, Era) sequence (Celeux and Govaert 

1992), the sequence produced by the TPEM algorithm converges to a station- 

ary value. 

When the process is in the organizing phase, a fuzzy classification 

matrix U m is produced at each iteration step (~k Uik = 1 and Uik ~ [0,1]). As 

soon as the CEM phase begins, the classification becomes hard (~k ulk = 1 

and Uik ~ {0,1}). 

From a practical point of view, the solution provided by the TPEM 

algorithm does depend upon the decay rate of the neighborhood width, the 

initial width, and the initial partition. It may happen that the algorithm stops 

in the self-organization phase and provides then a "bad" CML value (when 

we compare with the results obtained by CEM), To overcome this problem, 

the TPEM algorithm is rerun several times with different setting of the initial 

parameters, and the solution which provides the best CML criterion is 

selected. In the following we propose a stochastic version of TPEM, STPEM, 

which directly addresses the parameter initial-setting dependence. 

3.2 The Stochastic Topology Preserving EM Algorithm 

The algorithm uses a Random Imputation Principle (RIP, see Celeux 

and Diebolt 1985) during the Classification step. It has exactly the structure 

of TPEM except for the C-step: 

1. All the parameters are initialized as for TPEM. 

2. For the m-th iteration, the following steps are executed unless a stop- 

ping condition is reached: 

(a) E-step.  

(b) C-step: Compute score matrix elements, m Sik, according to 
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Equation 13. Notice that this score matrix, Sin= [s~,] of  

STPEM, is equivalent to the classification matrix U m = [u~] of 

TPEM. Each Xg is assigned to a class k according to a multino- 

mial distribution with probabilities s i  l , �9 �9 �9 , s i K .  

(c) M - s t e p .  

STPEM shares some similarities with simulated annealing (see Klein 

and Dubes 1989 for more details about simulated annealing in clustering): It 

is possible to draw a parallel between the width of the neighborhood ~m in 

STPEM and the temperature of the system in simulated annealing. The 

smaller the temperature is (respectively the neighborhood width), the less ran- 

dom decisions influence the system. 

When the width of  the neighborhood is smaller than one, STPEM 

becomes CEM. Notice that STPEM, like TPEM, comprises two phases. The 

first Self-Organizing phase, where CML does not always increase, and a ran- 

dom factor determined by the neighborhood width is important for the com- 

putation of the classification matrix. The second phase is identical to the 

second phase of TPEM: it is a succession of CEM iterations. 

Concerning the convergence of STPEM, the same observations apply 

as for TPEM. As STPEM becomes CEM after a certain number of iterations, 

the algorithm converges. 

In the next section, we report numerical experiments to assess the abil- 

ity of TPEM and STPEM to produce local maxima of the CML criterion and 

good reduced representations. 

4. Numerical Experiments 

We have performed numerical experiments to compare the SOFM, 

CEM, TPEM, and STPEM algorithms. These numerical experiments attempt 

to illustrate two different capacities of TPEM and STPEM. Firstly, we want to 

assess the ability of TPEM and STPEM to partition multidimensional data. 

Second, we are interested in the topology preservation property of the algo- 

rithms and their ability to produce reduced representation. 

To compare the performance numerically, we use two different criteria. 

For measuring the clustering ability, we use W, the within class sum of 

squared errors criterion (see Equation 5). As mentioned in Section 2, this 

measure is equivalent to the Classification Maximum Likelihood when 

assuming that samples are from spherical Gaussian distributions mixed in 

equal proportion. For measuring the topological preservation we use a cri- 

terion that we call the Sum of the Edge Length criterion. Topological conser- 

vation between input space and output space means that neighboring nodes in 

the array must be neighbors in the input space: thus a mathematical measure 
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of this property may be the sum of the edges of the array: 

K K 

SEL -- E Z h(k,t). II tk - ll, ( 1 4 )  
k=l /=1 

where h(k,l) = 1 if classes k and l are neighbors in the output space and 

h(k,l) = 0 otherwise. This criterion was used by Durbin and Mitchinson 

(1990) and Benaim and Tomasini (1991) to design topology preserving algo- 

rithms. We have used both real and simulated data with or without cluster 

structure. The real data set consists of Anderson's iris data (Anderson 1935). 

It is composed of three classes of 50 four-dimensional samples each and will 

be called IRIS. The second data set, GAUSS, is composed of three spherical 

Gaussian clusters of 50 two-dimensional samples each. The means of the 

three clusters are respectively (0,0) (3,0) and (2,2) and all have I as covari- 

ance matrix. We simulated a two-dimensional uniform distribution of 400 

samples in a square and in a triangle. These data sets will be denoted respec- 

tively UNI_SQR and UNI_TRI. Notice that UNI SQR and UNI_TRI have 

no well-separated clusters, contrary to the IRIS and GAUSS data sets. 

From a probabilistic point of view, the k-means algorithm assumes that 

all sought classes are Gaussian with spherical shape, that they are mixed in 

the same proportion, and have the same volume. The SOFM algorithm is 

closely related to the k-means algorithm and has the same assumptions. To 

compare STPEM and TPEM with SOFM and the CEM algorithms, the imple- 

mentation of the EM family algorithms makes the same hypothesis about the 

structure of the dusters. Notice that in this particular case, CEM is equivalent 

to the k-means and TPEM to the Batch Map of Kohonen. Recall that TPEM 

and STPEM have two different kind of iterations: the first constitute an initial- 

ization phase and are followed by some iterations of the CEM algorithm, 

which is the k-means algorithm for these numerical experiments. 

Concerning the neighborhood shrinking function of the form 

0m+l = a �9 0,~ (where 0m is the width of the neighborhoodtaken into account 

at step m), we chose a = 0.98 and 00 as being half the number of classes. 

From our experience these values provide good solutions within a reasonable 

number of iterations. 

Topology preserving algorithms may be used for cluster analysis or 

dimensionality reduction. We tested the clustering ability with the IRIS and 

GAUSS data sets (see Figure 1), seeking a partition of the data into three 

classes. 

When performing dimensionality reduction, we want the output space 

representation to represent as well as possible the topology of the input sam- 

pies. It is possible to preserve the information about the topology by using 

many neurons (or classes in the cluster analysis terminology). Thus we use a 
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Figure 1. A 3 neuron linear metwork and the GAUSS data set. 
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Figure 2. A 36 neuron linear network and the UNI_TRI data set. 
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Figure 3. A 36 neuron planar network 'rod the UNI_CAR data set. 
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linear network of 36 neurons to cope with the UNI_TRI data set and a grid of 

6 by 6 neurons with the UNI CAR data set (see Figures 2 and 3). 

Because the solutions obtained with this kind of algorithm depend on 

the initialization, we ran each algorithm 30 times with different initializations. 

The CML and SEL criteria obtained by each algorithm with a data set are 

summarized by a 2-dimensional histogram. Figures 4 through 7 and Table 1 

report summary statistics concerning these numerical experiments. 

5. Discussion 

If the TPEM algorithm stops in the initialization phase, it then gives a 

small value of the SEL criterion and a big value of the W criterion. An 
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example of this behavior is visible with the IRIS and GAUSS data sets (Fig- 

ures 4c and 5c). With these data sets the TPEM algorithm produces two types 

of results: solutions with very small (good) values of the W criterion and con- 

Wasting solutions with big values of the W criterion as the result of aborted 

runs. Such solutions are uninteresting for clustering and dimensionality 

reduction because some classes are empty. 

When the TPEM algorithm does not stop, the results obtained are sta- 

tistically very close to STPEM algorithm results. This finding is particularly 

clear if  one looks at Figures 6 and 7 and probably results from the two topol- 

ogy preserving algorithms, which both terminate with k-means iterations. 

With all the data sets, the STPEM algorithm always produces better 

values than the k-means algorithm of the W criterion with a smaller standard 

deviation. For example, with the IRIS and GAUSS data sets where the cluster 

structure is strong, STPEM gives the same solution for all 30 runs. 

An intuitive explanation is that the initialization phase, which is where 

the prototypes are organized to preserve the topology, guides the algorithms 

near some local optima of the W criterion. Experimentally we observe that the 

topology preservation constraints reduce the number of possible optima. 

Kohonen algorithm produces different values of the two criteria for 

each run, but small standard deviations. The values of the criteria are identi- 

cal because it is an adaptive algorithm and it converges after an infinite 

number of iterations (if it converges. That is not proved yet). From a practical 

point of view this means that the algorithm is very robust and seems to con- 

verge toward a small set of optima. 

The topology preserving algorithms we have considered are robust 

algorithms which are less sensitive to the initialization dependence problem 

than k-means because of the self-organizing phase. The behavior of the 

Kohonen, TPEM, and STPEM algorithms has been shown to be comparable. 

TPEM and in particular the STPEM algorithms may be considered as batch 

versions of the Kohonen algorithm. 

6. Conclusion 

We have proposed two algorithms which can be considered as batch 

versions of the SOFM algorithm. They use the ideas of Kohonen about topo- 

logical relationship between classes to provide some particular initialization 

to the CEM algorithm and tend to produce fewer local optima than CEM of 

the CML criterion. Further research should determine in which context each 

algorithm performs best. It would be especially interesting to explore the 

possibilities offered by the probabilistic framework (Celeux and Govaert 

1995): implementation of TPEM and STPEM for finding classes with 

different shapes, volumes, and proportions. 
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Figure 4. Results obtained with the IRIS data set. 
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Figure 5. Results obtained with the GAUSS data set. 
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Figure 6. Results obtained with the UNI_TRI data set. 
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Figure 7. Results obtained with the UNI CAR data set. 
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