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Summary: This paper introduces a method for analysing dissimilarity matrices. The pro-
posed approach is based on the Kohonen self-organizing maps algorithm and may be used
either for clustering or for data visualization. This is illustrated with the analysis of a real
data set and compared with classical multidimensional scaling techniques.

1. Introduction

Exploratory data analysis aims to detect and analyse heterogeneity, variability, and
underlying structures in important data sets. Most of the time, the data comprises
a set of n objects described by several variables. This makes it, possible to define
a distance on the space of the objects (also called input space) and then to use a
great amount of existing methods which assume the existence of a distance (PCA,
k-means...).

Sometimes the only available data is a dissimilarity matrix. Dissimilarity data are
measures representing the amount of differences between pairs of objects. Dissimilari-
ties among n objects are specified with an n×n matrix, δ = {δij}i,j=1..n. Dissimilarity
matrices may arise from different origins: Human judgement may be easily translated
into similarity or dissimilarity measurement. Data like driving times between pairs
of cities are naturally available as dissimilarities and it is also possible to derive a
dissimilarity matrix from an objects/variables data structure.

In some cases the transformation of the dissimilarity matrix into a distance matrix
does not involve a great loss of information and classical methods may be used effec-
tively. But the analysis of a dissimilarity matrix may require specific methods when
the dissimilarities are badly approximated by distances. Multidimensional scaling
(MDS) is a set of data analysis techniques that picture the structure of the set of
objects. Multidimensional scaling techniques can be classified into metric and non
metric approaches. The metric methods produce representation preserving quan-
titative information (Sammon 1969) and non metric methods concentrate on the
qualitative relationship between the objects (Kruskal 1964).

An alternative class of methods which perform non–linear projection or feature ex-
traction has been developed in the field of neural networks. A well known neural
network algorithm is the Kohonen self-organizing maps algorithm (SOM, Kohonen
1982), which performs dimensionality reduction when the objets under consideration
are described by a set of variables. We propose to adapt a variant of the Kohonen
maps algorithm for dealing directly with dissimilarity data.



2. Kohonen Maps and dissimilarity data

On the one hand, the SOM algorithm is a clustering algorithm closely related to the
k-means, on the other hand it is used for dimensionality reduction of high-dimensional
data. The method associates a finite number of d-dimensional vectors, called input
patterns, with a finite number of prototypes (also called neurons). The prototypes are
organized in a one-dimensional or two-dimensional array. The topological relation-
ship between input patterns in the input space is reflected as faithfully as possible
in the arrangement of the corresponding neurons in the array (also called output
space). In the neural networks terminology, this property is referred to as topology
preservation. Used as a clustering technique, each neuron matches with a unique
cluster and the relationship between the neurons may facilitate the interpretation of
the partition. For dimensionality reduction, the input patterns are ‘projected’ onto
the grid, and form a one or two-dimensional non-linear representation of the data.

The SOM method was originally implemented as an adaptive algorithm. Kohonen
has presented a ‘batch’ version called the ‘Batch Map’ algorithm (Kohonen 1993).
The authors have investigated the relationship between the probabilistic approach
of clustering and the ‘Batch Map’ algorithm and have proposed a batch algorithm
(Ambroise and Govaert, to appear) which may be easily adapted for dealing with
dissimilarity data.

Let c = {ckl}k,l=1..K be the matrix of the distances between the K neurons in the
ouptut space. Starting from a random classification of the objects, the following steps
are computed until the classification becomes stable:

• Finding the object which is the best representative of each class. Object i∗ is
the prototype of class k if:

i∗ = arg min
i

∑
j∈Ck

δij (1)

• Topology preservation: For each object i, K coefficients (pi1, · · · , piK) are
computed:

pik =
h(k, k∗)∑K

k′=1 h(k′, k∗)
(2)

where k∗ is the class of object i, and h(k, k∗) is the neighboring function,

h(k, k∗) =
{

1 if ckk∗ < σ
0 otherwise

where σ is the width of the neighborhood taken into account and ckk∗ the
distance between class k and class k∗ in the output space. σ is decreasing with
the number of iterations.

• Stochastic classification: Each object i is assigned randomly to a class k ac-
cording to the multinomial distribution defined by the proportions (pi1, · · · , piK).



3. Numerical Example

3.1 The French rail way

The dissimilarity matrix that we have considered contains the travel times by train
between 21 important French cities. This data has been pictured by three different
methods: The Sammon projection, the Kruskal algorithm and a hybrid Kohonen–
Sammon projection, described below.

3.2 Sammon Projection for Kohonen Maps

Classical representations of Kohonen maps display each object at the location of its
prototype in the output space. Following Lowe and Tipping (1995), we propose to use
Sammon mapping for generating a better display of a Kohonen map. The Sammon
mapping finds xi,...,xn, a configuration of points in the plane, which minimizes the
following stress function:

S =
1∑

i>j δij

∑
i>j

(δij − dij)
2

δij

(3)

where dij is the euclidian distance between xi and xj. A hybrid representation be-
tween Kohonen maps and Sammon mapping can be obtained by replacing, in the
stress function, the initial dissimiarities δij, by δ∗ij

δ∗ij = (1 − α) · δij + α · cclass(i)class(j) (4)

where cclass(i)class(j) is the distance between the prototypes of objects i and j in the
output space.

3.3 Discussion

All the mappings show that the travel times are not directly linked with the geo-
graphical distances between the cities (Figure 1a).

The Sammon Mapping (Figure 1b) and the Kruskal MDS (Figure 1c) produce very
similar representations. They locate Paris in a central position and tend to map the
other cities around Paris in a circular structure, preserving the local relationship.
This is indicative of the centralized structure of the French rail way.

The Kohonen like algorithm (Figure 1d), with 4 prototypes, separates the cities in
four groups which correspond roughly to north, south/east, east and south/west
geographical regions. The topology preserving property of this algorithm gives in-
formation about the similarity relationship existing between these four clusters. The
Kohonen–Sammon projection (α = 0.8) represents the cities while respecting the
global information relative to the positioning of the clusters, and shows also the local
relationship between the cities within each class.

In these figures, we have illustrated the efficiency of an algorithm for getting a Koho-
nen map from a dissimilarity matrix and the specificity of the Kohonen approach in
dimensionality reduction. A Kohonen map projects the objects in a low dimensional
space and produces a classification of these objects. The hybrid Kohonen–Sammon



(a) Geographical location of 21 french cities (b) Sammon projection

(c) Kruskal projection (d) Hybrid Kohonen–Sammon projection

Figure 1: The French rail way



projection, in its data representation, takes advantage of these two features for pic-
turing the data.
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