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Evaluation
A Natural Language Processing (NLP) project to be completed in pairs:

Code (in a Python notebook or R Markdown)

Presentation (scheduled for April 4, 2025)
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Factor Analyser
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Factor Analysis

Using discrete latent variables provides limited summary (clustering)

An alternative is to use a vector of real-valued latent variables, .

“Factor analysis (FA) is a statistical method used to describe variability among observed,
correlated variables in terms of a potentially lower number of unobserved variables called
factors.” Wikipedia quote.

PCA and FA are related, but not identical.

z ∈ RL
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The model of factor analysis

We consider the observation 

where

the noise 

the hidden (latent) vector 

the mean is a linear function of the (hidden) inputs

 is a  matrix, known as the factor loading matrix,

 is a  covariance matrix that we take to be diagonal

The special case in which  is called probabilistic principal components analysis or PPCA.

x ∈ RD

x = Wz + μ + ϵ

ϵ ∼ ND(0, Ψ)
z ∼ NL(0, IL)

p(x|z, θ) = N (Wz + μ, Ψ)

W D × L

Ψ D × D

Ψ = σ2I
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Reminder: Joint and conditional Gaussian distribution (see Murphy

chapter 4)

Let us recall that if

 and  and 

then

and

where

z ∼ N (μz, Σzz) x ∼ N (μx, Σxx) cov(z, x) = Σzx

p(z, x) = N([ ]| [ ], [ ])
z

x

μz

μx

Σzz Σzx

Σxz Σzz

p(z, x) = p(z|x)p(x) = N (z|μz|x, Σz|x)N (x|μx, Σxx)



μz|x = μz + ΣzxΣ−1
xx (x − μx)

Σz|x = Σzz − ΣzxΣ−1
xxΣxz
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Marginal and posterior distribution

Marginal distribution

Posterior distribution

where

Exercice

Demonstrate the above formulas

x ∼ ND(μ, Σxx = WW T + Ψ)

z|x ∼ NL(μz|x, Σz|x)

Σz|x = (IL + W T Ψ−1W)−1 = S

μz|x = Σz|xΣ−1
xx (x − μ) = SW T Ψ−1(x − μ)
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Estimation

The mean 

can be estimated by maximum likelihood

 and 

are estimated using an EM algorithm

μ

μmle = x̄

W Ψ
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EM algorithm

Data

Observed data 

Missing (or hidden) data : 

Principle

Starting from 

At step 

→ E(xpectation) step: 

→ M(aximisation) step: 

: x1:n

: z1:n

θ0

q

Q(θ, θq) = EZ1:n|x1:n [logP(x1:n, z1:n, θ)]

θq+1 = argmaxθQ(θ, θq)
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EM for factor analysis

Let us assume that  (centering of the ), the complete log-likelihood is

where

Exercice

Demonstrate the above formula

μ = 0 xi

log p(X, Z|μ, W , Ψ) = ∑

i

log NL(zi; 0, I) + log ND(xi; Wzi, Ψ)

= −
n

2
log |IL| −

n

2
Tr(Σ̂zz)

−
n

2
log |Ψ| −

n

2
Tr(Σ̂xxΨ−1) + Cst

Σ̂xx =
1
n
∑

i

(xi − Wzi)(xi − Wzi)T
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E step

The expectation of the complete log-likelihood requires

1.  where 

2. 

Ez|x[zi] = SW T Ψ−1(xi − μ) S = (IL + W T Ψ−1W)−1

Ez|x[ziz
T
i ] = Ez|x[zi]Ez|x[zT

i ] + S
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M step

Reminders

Thus if  is a vector

∂(bTa)
∂a

= b

∂(aTAa)
∂a

= (A + AT )a

∂
∂A

tr(BA) = BT

∂
∂A

log |A| = (A−1)T

tr(ABC) = tr(CAB) = tra(BCA)

x

xTAx = tr(xTAx) = tr(AxxT )
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M step for 

where

Ψ

Ez|x [
∂L(W , Ψ)

∂Ψ−1
] = Ez|x [

n

2
(Ψ − Σ̂xx)] =

n

2
(Ψ − Ez|x [Σ̂xx]) = 0

Ez|x [Σ̂xx] =
1
n

(∑
i

xix
T
i + W(∑

i

Ez|x [ziz
T
i ])W

T − 2W∑

i

Ez|x [zi]xT
i )

=
1
n

(∑
i

xix
T
i + W(∑

i

Ez|x [zix
T
i ]) − 2W∑

i

Ez|x [zi]xT
i )

=
1
n

(∑
i

xix
T
i − W∑

i

Ez|x [zi]xT
i )
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M step for W

Ez|x [
∂L(W , Ψ)

∂W
] = Ez|x [−Ψ−1

∑

i

xiz
T
i + Ψ−1W∑

i

ziz
T
i ] = 0
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M Step summary

Loading matrix

Noise covariance matrix

Log-likelihood

The log-likelihood can be computed using the EM decomposition

W q+1 = (∑

i

(xi − x̄)Ez|x[zi]T)(∑

i

Ez|x[ziz
T
i ])

−1

Ψq+1 =
1
N

diag{∑

i

xix
T
i − W q+1Ez|x[zi]xT

i }

logP(X; Θ) = EZ1:n|x1:n [logP(x1:n, z1:n; θ)] − EZ1:n|x1:n [logP(z1:n|x1:n; θ)]

15



Implementation of the algorithm

Initialisation via a PCA

E step

M Step

initialisation.FA<-function(X,L=1){1
  # Return W and Psi2
  d<-ncol(X)3
  Sigmaxx<-var(X)4
  W<-eigen(Sigmaxx)$vectors[,1:L]5
  if (L==1) W<-cbind(W)6
  Psi<-rep(1,d)7
  return(list(W=W,Psi=Psi))8
}9

FA.E.step<-function(X,W,Psi){1
  # X is assumed to be centered2
  # M contain the contionnal expectation of the latent factor3
  # S contains the covariance of the latent factor4
  L<-ncol(W)5
  S <- solve(diag(L) + t(W)%*%diag(1/Psi)%*%W)6
  M<- X%*%diag(1/Psi)%*%W%*%S7
  return(list(S=S,M=M))8
}9

Computation of the criterion

Putting it all together

FA.M.step<-function(X,S,M,W,Psi){1
  n<-nrow(X)2
  Psi<-1/n*diag(t(X)%*%X -W%*%t(M)%*%X)3
  W<- (t(X)%*%M)%*%solve(n*S+t(M)%*%M)4
  return(list(Psi=Psi,W=W))5
}6

log.likelihood.FA<-function(X,S,M,Psi,W){1
  n<-nrow(X)2
  Sigmax<-(t(X)%*%X-W%*%t(M)%*%X)3
  return(-(sum(diag(S+t(M)%*%M/n))4
          +log(det(diag(Psi)))+5
            log(det(S))+6
            1/n*sum(diag(Sigmax%*%diag(1/Psi)))))7
}8

FA.EM<-function(X,L=1,max.iter=50){1
  X<-scale(X,scale=FALSE);mu<-attr(X,"scaled:center")2
  log.likelihood<-NULL; init<-initialisation.FA(X,L)3
  W<-init$W;  Psi<-init$Psi; criterion<- Inf; iteration<-1;  4
  log.likelihood[iteration]<--Inf5
  while ((criterion>1e-6)&&(iteration<=max.iter)){6
    E.step<-FA.E.step(X,W,Psi); E.step$S->S; E.step$M->M7
    M.step<-FA.M.step(X,S,M,W,Psi); M.step$Psi->Psi; M.step$W->W8
    iteration<-iteration+19
    log.likelihood[iteration]<-log.likelihood.FA(X,S,M,Psi,W)10
    criterion<-abs((log.likelihood[iteration] - log.likelihood[iteration-1])/max(log.likelihood[iteration], log.likelihood[iter11
  }12
  return(list( W=data.frame(W), Psi=Psi,13
               M=data.frame(M), S=S,mu=mu,14
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               log.likelihood= log.likelihood[-1]))15
}16

Example with the Iris
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Unidentifiability

If we consider  an orthogonal rotation matrix such that

It appears that  produces the same log-likelihood.

 cannot be uniquely identified.

R

RRT = I

~
W = WR

W

18



Possible rotations

1. Forcing  to be orthogonal with colmuns ordered by deacresing variance

2. Forcing  to be lower triangular (problem of founder variables)

3. Choosing an informative rotation matrix. For example the varimax rotation.

4. …

Varimax

Varimax rotation maximizes the sum of the variance of the squared correlations between variables
and factors

This results in high factor loadings for a small number of variables and low factor loadings for the
rest.

W

W

RVARIMAX = arg max
R

1
p

k

∑

j=1

p

∑

i=1

(WR)4
ij −

k

∑

j=1

(

1
p

p

∑

i=1

(WR)2
ij)

2
⎛

⎝

⎞

⎠
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Varimax

W.FA<-FA.result$W1
W.Varimax<-varimax(as.matrix(FA.result$W))$loadings2
print(W.Varimax)3

Loadings:
             Latent Factor 1 Latent Factor 2
Sepal.Length  0.756                         
Sepal.Width                  -0.429         
Petal.Length  1.683           0.509         
Petal.Width   0.711           0.174         

               Latent Factor 1 Latent Factor 2
SS loadings              3.916           0.473
Proportion Var           0.979           0.118
Cumulative Var           0.979           1.097
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Mixture of factor analysers

Factor analyses is a way to estimate a variance matrix with few parameters

This property can be used in the context of Gaussian mixture model assuming the following
parameterization for component densities:

where  is the component number and  is a loading matrix defining the relation between the
observation  and the latent vector 

This approach is simular to the Banfield-Raftery idea of decomposing the component variance
matrix  in volume, form et direction.

Mixture of 1d PPCAs with 1 and 10 components (from Murphy Chapter 12)

p(xi|zi, qi = k) = N (xi|μk + Wkzi, Ψ)

k Wk

xi zi

k
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Relation to principal component analysis

Assumption

If

 is orthogonal

and

Then

Tipping, M. and C. Bishop (1999, Probabilistic principal component analysis. J. of Royal Stat. Soc.
Series B 21(3), 611–622) showed that FA is equivalent to PCA

Criterion

Ψ = σ2I

W

σ2 → 0



where 

J(W , Z) = ∥X − ZW T∥2
F

W TW = I
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A Constrained EM Algorithm for PCA (from Ahn, J.-H. and J.-H. Oh,

2003)

upper<-function(A){A[lower.tri(A,diag=FALSE)]<-0;return(A)}1
lower<-function(A){A[upper.tri(A,diag=FALSE)]<-0;return(A)}2
PCA.EM<-function(X,q=2){3
  p<-ncol(X); n<-nrow(X)4
  W<-diag(p)[,1:q]; M<-X%*%W # Initialisation5
  Jold<-0; J<-1; iteration<-0; Error<-NULL6
  while ((abs(J - Jold)>1e-3)){7
    Jold<-sum((X-M%*%t(W))^2)8
    S <- solve(upper(t(W)%*%W)); M<- X%*%W%*%S # E-step9
    W<- (t(X)%*%M)%*%solve(lower(n*S+t(M)%*%M))# M-step10
    W<-apply(W,2,function(x){x/sqrt(sum(x^2))})#orthogonalisation11
    J<-sum((X-M%*%t(W))^2); Error[iteration<-iteration+1]<-J12
  } 13
  return(list(W=data.frame(W),M=data.frame(M),Error=Error))}14
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Independent Component Analysis

24

Independent Component analysis (Wikipedia)

Independent component analysis attempts to decompose a multivariate signal into independent
non-Gaussian signals.

Cocktail party problem

Underlying speech signals are separated from a sample data consisting of people talking
simultaneously in a room.

That the ICA separation of mixed signals gives very good results is based on two assumptions

Two assumptions:

The source signals are independent of each other.

The values in each source signal have non-Gaussian distributions.

25



ICA Historical context (French Wikipedia)

Blind source separation

The first formulation was carried out in 1984 by Jeanny Hérault and Bernard Ans, two researchers in
neuroscience and signal processing, to model in the form of a neuromimetic network self-adaptive
encoding and decoding of movement in humans.

France and Finland

The French signal processing community adopted a statistical formalism

While Finnish researchers aimed to extend principal component analysis by means of a
connectionist formalism (1985)

Formalisation

26

ICA Model

Let  be the observed signal at the sensors at ‘’time’’ , and  be the vector of source
signals:

 is an  matrix,

.

The model is identical to factor analysis (or PCA if there is no noise, except we don’t in general
require orthogonality of W).

However, we will use a different prior for .

In FA, we assume each source is independent, and has a Gaussian distribution.

Relax this Gaussian assumption on latent variables (sources)

xt ∈ RD t zt ∈ RL

xt = Wzt + ϵt

W D × L

ϵt ∼ N (0, Ψ)

p(zt)

∏



Additionnal assumptions

Without loss of generality the variance of the source distributions is contrained to unity

W is assumed square and hence invertible.

p(zt) = ∏

j

pj(ztj).
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Maximum likelihood estimation of ICA

If the data is centered and whitened, we have

also have

Hence we see that  must be orthogonal. This reduces the number of parameters we have to
estimate from  to .

Recognition weights/Generative weights

Let  these are often called the recognition weights, as opposed to , which are the
generative weights

Log-likelihood

Since , we have

E[xxt] = I = WE[zzT ]W T = WW T

W

D2 D(D − 1)/2

V = W −1 W

x = Wz

px(Wzt) = pz(zt)|det(W −1)| = pz(V xt)|det(V )|



Hence assuming T iid samples:

since  is orthogonal.

L(V ) =
1
T

log p(D|V ) = log |det(V )|

0

+
1
T
∑

jt

log pj(vTj xt)


V
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Estimation via Gradient Ascent

Let us define ,

where the datapoint .

Repeat for each datapoint :

hj = vT
j x

gj(hj) =
∂ log pj(hj)

∂hj

,

∂L(V )
∂Vij

= Wji + xigj(hj).

xT = (xi)i=1⋯D

x



1. Put  through a linear mapping:

.

2. Put  through a nonlinear map:

, where a popular choice is .

3. Adjust the weights in accordance with

matrix inversion results in a slow algorithm

x

h = V x

h

gj = gj(hj)

g() = −tanh()

∇V ∝ [V T ]−1 + xgT .
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Fast ICA (for one latent factor )

Let consider , .

, the theoritical objective function (to be minimized)

, the gradient

, the hessian matrix

Let us make the approximation

This makes the Hessian very easy to invert, giving rise to the following Newton update:

Which can be expressed as

v

G(z) = − log p(z) g(z) = G′(z)

L(v) = E[G(vTx)] + λ(1 − vTv)

∇L(v) = E[xg(vTx)] − 2λv

H(v) = E[xxTg′(vTx)] − 2λI

E[xxTg′(vTx)] = E[xxT ]

I

E[g′(vTx)] = E[g′(vTx)]


v∗ ≜ v − H(v)−1∇L(v) = v −
E[xg(vTx)] − 2λv

E[g′(vTx)] − 2λ



(In practice, the expectations can be replaced by Monte Carlo estimates from the training set, which
gives an efficient online learning algorithm.)

After performing this update, one should project back onto the constraint surface using

v := E[xg(vTx)] − E[g′(vTx)]v

v :=
v

∥v∥
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Fast ICA for 

Centering and Withining is assumed

For  the process is iterated for all  with orthogonalisation

Fast ICA for 

Intitilisation of 

for j in 1 to L:

→ while  changes

→ Newton update : 

→ Gram-Schmidt orthogonalisation : 

→ Normalisation: 

Output :

L > 1

L > 1 vj

L > 1

V

vj

vj := E[xg(vT
j x)] − E[g′(vT

j x)]vj

vj := vj − ∑

j−1
k=1(vT

j vk)vk

vj := vj

∥vj∥

Z = XV
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Non-Gaussianity

For non-Gaussianity, FastICA relies on a nonquadratic nonlinear function , its first derivative
, and its second derivative .

Classical cost

 which gives 

 which gives 

 which gives 

f(u)
g(u) g′(u)

G(u) = log cosh(u) g(u) = tanh(u)
G(u) = − exp(−u2/2) g(u) = u exp(−u2/2)

G(u) = u4/4) g(u) = u3

32

Neural networks and unsupervised

learning
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Modeling of a neuron

The first modeling of the neuron was suggested in the 1940s by Mac Culloch and Pitts. It was a unit
which according to several signals transmitted a binary response.

In general, a formal neuron has

dendrites which receive the input signal and

an axon which transmits the output signal

The input signal

 is a vector belonging most often to  or .

Dendrites

are characterized by a weight vector 

The output

x Rd {0, 1}d

w

is a function of  and , which is the composition of an input function,  and an output (or
activation) function, 

x w h(x, w)
f(h)

34



The neuron as a funtion

Most of the time the input function is a simple dot product:

The activation functions are diverse but belong to large families (radial bases, sigmoid functions …).

A typical activation function is for example:

The functions which have this appearance are said to be sigmoid

h(x, w) = xTw

f(x, w) = η ⋅
exp {(x, w} − 1
exp  (x, w)  + 1

.

35

Neural networks

Neurons can be connected to each other and then form a network.

Learning consists of adjusting the free network parameters according to the desired goal, that is,
to calculate the values of the weight vectors as a function of the inputs.

Two layers networks

with one input layer transmitting the input vector to the second layer neurons

with one output layer compressing the information of the first layer with linear activation
function

allows to rewrite k-means and PCA with online learning (gradient descent)

36



Hebbian Learning (Hebb 1949)

Principle

An increase of synaptic strength between an input and an output neuron may be related to the firing
rates of the input and output [Hebb, 1949].

Practical implementation

As a result, synaptic strengths will increase fastest between pairs of neurons whose responses are
correlated, and the resulting increase in synaptic strength will lead to a further increase in the
correlation.

or in scalar form with implicit n-dependence,

Increasing the correlation in this manner may lead to a useful pattern of synaptic strengths over a
population of neurons.

Δw  =  η y(x)x,

wi(n + 1)  =  wi(n) + η y(x)xi

37

Stochastic Gradient Descent (from Wikipedia)

Statistical estimation and machine learning consider the problem of minimizing an objective
function that has the form of a sum:

where the parameter  that minimizes  is to be estimated.

Each summand function  is typically associated with the  observation in the data set (used
for training).

Sum-minimization problems arise:

in least squares and in maximum-likelihood estimation,

empirical risk minimization.

When used to minimize the above function, a standard (or “batch”) gradient descent method would
perform the following iterations:

Q(w) =
1
n

n

∑

i=1

Qi(w),

w Q(w)

Qi i − th



where  is a step size (sometimes called the learning rate in machine learning).

w := w − η∇Q(w) = w −
η

n

n

∑

i=1

∇Qi(w),

η

38

Iterative method

Fluctuations in the total objective function as gradient steps with respect to mini-batches are taken.

In stochastic (or “on-line”) gradient descent, the true gradient is approximated by a gradient at a
single example:

As the algorithm sweeps through the training set, it performs the above update for each training
example.

Several passes can be made over the training set until the algorithm converges.

If this is done, the data can be shuffled for each pass to prevent cycles.

Typical implementations may use an adaptive learning rate so that the algorithm converges.

w := w − η∇Qi(w).
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Stochastic Gradient in pseudocode

1. Choose an initial vector of parameters  and learning rate 

2. Repeat until an approximate minimum is obtained:

a. Randomly shuffle examples in the training set.

b. For  do: 

w η

i = 1, 2, ⋯ ,n w := w − η∇Qi(w).

40

Adaptative learning rate

A distinction exists between constant gain algorithms,

and decreasing gain algorithms,

The first are dedicated to the estimation of parameters changing slowly over time and the second to
the estimation of stable parameters.

ηn ≥ 0,    limn→∞ηn = η > 0

∞

∑

n=0

ηn = ∞,   
∞

∑

n=0

η2
n < ∞.
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K-means and Winner take all

is a computational principle applied in computational models of neural networks by which neurons
in a layer compete with each other for activation.

The simplest form of competitive learning modifies only the weight vector of “the best” neuron at
every stage of learning.

In fact, with each presentation of a input (a vector of the training set), two steps are performed:

1. choose the best neuron, i.e. the one that shows the most important output

2. modify the weight vector of this neuron.

When the activation function is increasing (which is not true for the functions with radial basis), the
winning neuron is the one that produces the greatest value of function entry.

If we consider a dot product as an input function, the weight vector of the winner, , checks:i∗

∀i,  (wi∗ ⋅ x) ≥ (wi ⋅ x).

And if the weight vectors are normalized, the winner is the neuron that has the weight vector, closest
to the input , in the sense of the Euclidean distance.

The coordinates of the winner’s weight vector are updated using a rule of the type following :

where  is the training step at iteration .

x

wi∗(t + 1) = wi∗(t) + η(t) ⋅ (x − wi∗(t)),  η(t) ≤ 1

η(t) t

42



Stochastic Gradient for Kmeans (online Kmeans)

The criterion to be optimized can be written as

1. Choose an initial vector of parameters  and learning rate 

2. Repeat until an approximate minimum is obtained:

a. Randomly shuffle examples in the training set.

b. For  do:

1. For 

Q(w1, ⋯ , wK) =
1

2n
∑

i
∑

k

I(k=argminℓ∥xi−wℓ∥2)∥xi − wk∥2

w η

i = 1, 2, ⋯ ,n
k = 1, 2, ⋯ ,K

∇Qi(wk) = − 1
n I(k=argminℓ∥xi−wℓ∥2)(xi − wk)

wk := wk − η∇Qi(wk).
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Kmeans implementation

kmeans.winner.take.all<-function(X,K=2,max.iteration=2000){1
  p<-ncol(X);  n<-nrow(X);shuffling<-sample(1:n,n)2
  X<-X[shuffling,];  W<-X[sample(1:n,K),]3
  Q<-rep(0,max.iteration); cluster<-rep(0,n)4
  distances<-rep(sum(diag(var(X)))*(n-1)/n,n)5
  for (i in 1:max.iteration){6
    x<-cbind(X[(i-1)%%n + 1,])7
    distances.x.to.W<-sum(x^2)-2*as.matrix(x)%*%t(W)+ colSums(t(W^2))8
    winner.index<-which.min(distances.x.to.W)9
    W[winner.index,]<-W[winner.index,] + 1/i*(x-W[winner.index,])10
    cluster[(i-1)%%n + 1]<-winner.index11
    distances[(i-1)%%n + 1]<-distances.x.to.W[winner.index]12
    Q[i]<-mean(distances) }13
  return(list(W=W,Q=Q,cluster=cluster[order(shuffling)]))14
}15
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One line kmeans example with Fisher iris

data(iris)1
X<-iris[,1:4]2
set.seed(1)3
kmeans.winner.take.all(X,3)->res4
table(res$cluster,iris$Species)5

   
    setosa versicolor virginica
  1     50          0         0
  2      0         45        11
  3      0          5        39

45

One line kmeans example with Fisher iris
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PCA and Oja’s rule

Consider a linear neuron with output  that returns a linear combination of its inputs 
using presynaptic weights .

PCA according OJA

Oja’s rule defines the change in presynaptic weights  given the output response  of a neuron to its
inputs  to be

z = wTx x
w

w y
x

w := w − ηz(x − zw)

47

Stochastic Gradient PCA and Oja’s rule

The criterion to be optimized can be written as

where .

1. Choose an initial vector of parameters  and learning rate 

2. Repeat until an approximate minimum is obtained:

a. Randomly shuffle examples in the training set.

b. For  do:

Q(w) =
1

2n
∑

i

∥xi − x̂i∥
2 =

1
2n

∑

i

∥xi − yiw∥2 =
1

2n
∑

i

∥xi − wTxiw∥2

∥w∥2 = 1

w η

i = 1, 2, ⋯ ,n
∇Qi(w) = yi(xi − yiw)
w := w − η∇Qi(w).
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Oja’s rule implementation

Oja.rule<-function(X,max.iteration=10000,eta=0.001){1
  p<-ncol(X);  n<-nrow(X)2
  w<-rbind(rep(1,p)); w<-w/(sqrt(sum(w^2)))3
  Q<-rep(0,max.iteration)4
  for (i in 1:max.iteration){5
    Q[i]<- 1/(2*n) *sum((X - X%*%t(w)%*%w)^2)6
    x<-X[(i-1)%%n + 1,]7
    y<-sum(w*x)8
    w<-w + eta*y*(x-w*y)}9
  return(list(w=w,Q=Q))10
}11
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Oja’s rule example with Fisher iris
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Variational auto-encoder

51

Variational autoencoder ideas

The original papers

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014, June). Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine
learning (pp. 1278-1286). PMLR.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Main reference

Diederik P. Kingma and Max Welling (2019), “An Introduction to Variational Autoencoders”,
Foundations and Trends R in Machine Learning:

What is does



generate realistic samples of data,

allow for accurate imputations of missing data,

high-dimensional data visualisation

Clustering

How it works

Latent variables models which marry ideas from

approximate Bayesian inference

→ ELBO (Evidence Lower BOund)

→ Reparametrization

deep neural networks

→ Stochastic Gradient Descent

→ Retropropagation of the Gradient

to represent an approximate posterior distribution through variational lower bound optimization
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Auto-encoder Structure

Auto-encoder Structure
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What is a VAE ?

Coupling of 2 parametric models

VAE is a latent variable vector  and an observation 

encoder  (recognition model): , which is approximated by 

decoder  (generative model): 

encoder and decoder could be neural networks

Optimization of ELBO via Stochastic Gradient Ascent

The VAE ELBO approximates the likelihood of a latent variable model

The Gradient computation uses the re-parametrization trick

Each step of the gradient ascent augment the ELBO as an EM iteration

z x ∈ RD

p(x) = ∫ p(x, z)dz

g p(z|x) qΦ(z|x)

h ≈ g−1 pΘ(x|z)

54

Example of use

Data



Left batch of original training set - right : random generation of images
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Example of use

Learning from data

Frey image learning
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Example of use

New Data generation from latent simulation

Frey image generation
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Example of use

Data representation in latent space

Frey image representation
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Example of use

Missing data imputation after learning

Frey image pixel imputation
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Ingredient: Parameterization of conditional distributions with Neural

Networks
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Modeling joint distribution

: Observed random variables

 : underlying unknown distribution

: model distribution

Goal: 

We wish flexible 

x

p∗(x)
pθ(x)

pθ(x) ≈ p∗(x)

pθ(x)
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Modeling Conditional distribution

Classification and regression

pθ(y|x) ≈ p∗(y|x)
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Parameterization of conditional distributions with Neural Networks

Classification

θ = NeuralNet(x)

pθ(y|x) = Categorical(y, θ)
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Ingredient: Stochastic Gradient
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What differences between Oja’s rule and VAE

What is a VAE ?

Coupling of 2 parametric models

decoder (generative model):  where 

encoder (recognition model):  where  is approximated by 

In Oja’s rule

There are No probabilistic models

→  and

→ ,

Encoder and decoder share the same parameters 

x = hΘ(z) pΘ(x|z)
z = gΦ(x) p(z|x) qΦ(z|x)

z = g(x) = wTx

x̂ = h(z) = zw

w = Θ = Φ
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Factor analysis generalizes Oja and is closer to a VAE

Factor analysis considers the observation 

where

the noise 

the hidden (latent) vector 

the mean is a linear function of the (hidden) inputs

 is a  matrix, known as the factor loading matrix,

 is a  covariance matrix that we take to be diagonal

The special case in which  is called probabilistic principal components analysis or PPCA.

x ∈ RD

x = Wz + μ + ϵ

ϵ ∼ ND(0, Ψ)
z ∼ NL(0, IL)

p(x|z, θ) = N (x; Wz + μ, Ψ)

W D × L

Ψ D × D

Ψ = σ2I
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Ingredient : Evidence Lower BOund Minimization

67

Missing data

In a missing data framework the log-likelihood of the parameters is advantageously expressed as

Approximation

When the distribution of  is intractable, an approximation  is used

 is the inverse function for  in a Bayes sense

logPΘ(x) = Ez|x [log
P(x, z)
P(z|x)

]

z|x qΦ(z|x)

qΦ(z|x) pΘ(x|z)
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ELBO

where  from Jensen

logPΘ(x) = EqΦ(z|x) [log
PΘ(x, z)
PΘ(z|x)

]

= EqΦ(z|x) [log
PΘ(x, z)qΦ(z|x)
PΘ(z|x)qΦ(z|x)

]

= EqΦ(z|x) [log
PΘ(x, z)
qΦ(z|x)

]

ELBO

+ EqΦ(z|x) [log
qΦ(z|x)
pΘ(z|x)

]

DKL(qΦ(z|x)|pΘ(z|x))
 

DKL(qΦ(z|x)|pΘ(z|x)) = −Eq[log p

q
] ≥ − log Eq[

p

q
] ≥ 0
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Two for one

VAE finds parameters which approximately maximize the marginal likelihood  (good
generative function)

VAE finds the approximation of the recognition model which minimizes the KL divergence

PΘ(x)
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Alternative formulation of ELBO

ELBO can be rewritten as

For a suited choice of  and ,  can be calculated in closed form.

Exercices

1. Show that the ELBO can be rewritten as above

2. Compute the KL divergence between two multivariate Gaussians

ELBO = EqΦ(z|x) [logPΘ(x|z)] − DKL(qΦ(z|x)|pΘ(z))

p(z) q(z|x) DKL(qΦ(z|x)|pΘ(z))
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The ELBO is maximized by Stochastic Gradient

Let  be a i.i.d sample of random vector 

Gradient

The Gradient can be separated into 2 parts

1. 

2. 

X x

ELBO(X) = ∑

x∈X

L(Θ, Φ; x)

∇ΘL(Θ, Φ; x)
∇ΦL(Θ, Φ; x)
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Decoder Gradient: 

Given some usually verified conditions and a Monte Carlo Approximation

∇ΘL(Θ, Φ; x)

∇ΘL(Θ, Φ; x) = ∇ΘEqΦ(z|x) [log
PΘ(x, z)
qΦ(z|x)

]

= ∇ΘEqΦ(z|x) [logPΘ(x, z)]
= EqΦ(z|x) [∇Θ logPΘ(x, z)]
≈ ∇Θ logPΘ(x, z)
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Encoder Gradient: 

Encoder Gradient is more difficult to compute since in general

A reparametrization (variable change) trick allows a workaround

∇ΦL(Θ, Φ; x)

∇ΦL(Θ, Φ; x) = ∇ΦEqΦ(z|x) [log
PΘ(x, z)
qΦ(z|x)

]

= ∇ΦEqΦ(z|x) [logPΘ(x, z) − log qΦ(z|x)]
≠ EqΦ(z|x) [∇Φ logPΘ(x, z) − ∇Φ log qΦ(z|x)]
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Encoder function

Let us rewrite the decoder function with a random vector  whose distribution is not parametrized by
:

We just have to compute  after the change of variable

ϵ
Φ

z = g(x, ϵ; Φ)

∇ΦL(Θ, Φ; x) = ∇ΦEp(ϵ) [log
PΘ(x, z)
qΦ(z|x)

]

= ∇ΦEp(ϵ) [logPΘ(x, z) − log qΦ(z|x)]
= Ep(ϵ) [∇Φ logPΘ(x, z) − ∇Φ log qΦ(z|x)]
≈ ∇Φ logPΘ(x, z) − ∇Φ log qΦ(z|x)

log qΦ(z|x)
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Reparametrization trick
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Computing  with a change of variable

where the second term is the log of the absolute value of the determinant of the Jacobian matrix:

variable change  is chosen for the logdet being computationally affordable/simple

log qΦ(z|x)

log qΦ(z|x) = log p(ϵ) − log dΦ(x, ϵ)

log dΦ(x, ϵ) = log det

∣

⎛

⎜

⎝

∂z1
∂ϵ1

⋯ ∂z1
∂ϵk

⋮ ⋱ ⋮
∂zk
∂ϵ1

⋯ ∂zk
∂ϵk

⎞

⎟

⎠

∣
g()
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Factorized Gaussian Posterior

Model

Reparametrization

(μ, log σ) = EncoderNNΦ(x)

qΦ(z|x) = N (z; μ, diag(σ2))

qΦ(z|x) = ∏

i

qΦ(zi|x) = ∏

i

N (zi|EncoderNNΦ(x)) = ∏

i

N (zi|μi,σ2
i )

ϵ ∼ N (0, I)

z = μ + σ ⊙ ϵ
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Factorized Gaussian Posterior

The Jacobian of the transformation is

The log posterior density is

log dΦ(x, ϵ) = log det = log∏
i

σi

∣

⎛

⎜

⎝

∂z1
∂ϵ1

⋯ ∂z1
∂ϵk

⋮ ⋱ ⋮
∂zk
∂ϵ1

⋯ ∂zk
∂ϵk

⎞

⎟

⎠

∣
log qΦ(z|x) = log p(ϵ) − log |det(

∂z

∂ϵ
)|

= ∑

i

log N (ϵi; 0, 1) − logσi
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Reparametrization trick
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Full Gaussian posterior

Model

Reparametrization

Where  is a lower triangular matrix obtained from a Cholesky decompostion of 

qΦ(z|x) = N (z; μ, Σ)

ϵ ∼ N (0, I)

z = μ + Lϵ

L Σ = LLT
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Full Gaussian posterior

The Jacobian has a simple form

As the determinant of a triangular matrix is the product of its diagonal terms,

∂z

∂ϵ
= L

log qΦ(z|x) = log p(ϵ) − log |det(
∂z

∂ϵ
)|

= ∑

i

log N (ϵi; 0, 1) − logLii
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Algorithm input and output

Input:

: Dataset

 decoding function, with dist. 

 encoding function with dist. 

Output:

X

h(z) pΘ(x, z)
g(x) qΨ(z|x)

Θ
Φ

83

Algorithm

Initialisation of  and 

While SGD not converged do

Θ Φ



Draw a random minibatch 

 (Random noise for every datapoint in )

Compute

→  and

→ its gradients

→

→

XM ∈ X

ϵ ∼ p(ϵ) XM

~
LΘ,Φ(XM , ϵ) = 1

m ∑x∈XM log pΘ(x, z) − log qΦ(z|x)

log p(ϵ)−log dΦ(x,ϵ)

⎛

⎜

⎝



⎞

⎟

⎠

∇Θ
~
LΘ,Φ(XM , ϵ) = 1

m
∑x∈XM

∂ log pΘ(x,z)
∂Θ

∇Φ
~
LΘ,Ψ(XM , ϵ) = 1

m
∑x∈XM

log ∂dΦ(x,ϵ)
∂Φ

( ) := ( )+ η( )

Θ
Φ

Θ
Φ

∇Θ
~
LΘ,Φ(XM , ϵ)

∇Φ
~
LΘ,Φ(XM , ϵ)
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Original example from Kingma: Gaussian model with MLP

parametrization

Multivariate Gaussian decoder with a diagonal covariance structure

Decoder  or decoder (just swap  and ) are assumed to have multivariate Gaussian dist.
with a diagonal covariance structure:

Decoder

 where 

where  are the weights and biases of the MLP and part of  when used
as decoder.

pΘ(x|z) x z

logp(x|z) = log N (x; μ,σ2I) μ = W4h + b4

logσ2 = W5h + b5

h = tanh(W3z + b3)

{W3,W4,W5, b3, b4, b5} Θ



Encoder

Let us consider the prior 

swap  and  in the decoder above to get 

pΘ(z) = N (0, I)
x z qΦ(z|x)
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Gaussian VAE illustrated
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Mixture of Experts

87

Historical Context

Introduced in the early 1990s by Jacobs et al. (1991).

Ideas and Intuitions

Inspired by cognitive science, mimicking expert decision-making by assigning specialized sub-
models to different tasks.

Enhances generalization by combining multiple specialized models rather than relying on a
single monolithic structure.

Divide-and-conquer approach enables decomposition of complex tasks into manageable
subtasks, improving prediction accuracy (Masoudnia & Ebrahimpour, 2014; Yuksel et al., 2012).

Widely applied in machine learning, including speech recognition, image processing, LLM
(Deepseek, Mixtral, ChatGPT…)
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MoE Components

89

Model Formulation

: Output of the gating network

Probabilistic formulation

the gating network comes from a latent variable :

where

 is a sigmoid function for  or softmax for .

The expert  models a pdf corresponding the nature of 

f(yi; xi, Θ) =
K

∑

k=1

gk(xi; αk)fk(yi; xi, βk)

gk(xi)

f(yi; xi, Θ) = p(yi|xi, Θ)
z

gk(xi) = p(zi = k ∣ xi)

zi = k ∣ xi ∼ M (1; g(xi) = (g1(xi), … , gK(xi)))

g K = 2 K > 2
fk(yi; xi, βk) yi 90



MoE Architectures

Different types of expert models (Gormley & Eisner, 2019).

Variants include mixture models (unsupervised), prediction models (supervised).

Advantages & Challenges

MoEs enable large-scale models while reducing computational costs.

Challenges: high parameter count, complex gating network training.
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Example of regression mixture

Training Process

Labeled Data:

→ The MoE is trained on a dataset where each input is associated with a known output.

Expert Specialization:

→ Each expert learns to master a specific subset of the data, allowing for finer modeling of
variations present in the data.

Gating Network Training:

→ The gating network learns to associate inputs with the appropriate experts based on data
characteristics.

Inference Phase



Input Routing:

→ For new data, the gating network evaluates its characteristics and selects the most
suitable expert to make the prediction.

Output Combination:

→ In some cases, outputs from multiple experts may be combined to obtain a more robust
final prediction.
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Example of regression mixture



 ##
Example of regression mixture
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Singular Value Decomposition
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Singular Value Decomposition

Eigendecomposition of symmetric matrices

, there exist an orthonormal matrix  and a diagonal matrix

Singular Value Decomposition

Extend the decomposition to rectangular matrices

∀A ∈ Rn×n Q ∈ Rn×n

Λ = diag(λ1, ⋯ ,λn)

A = QΛQT

X = USV T
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Applications in machine learning

Dimensionality Reduction: SVD can be used for dimensionality reduction by reducing the rank of
a matrix

Latent Semantic Analysis: By decomposing a term-document matrix using SVD, LSA can
capture the latent semantic structure of the data

Principal Component Analysis (PCA): PCA is a SVD

Recommender Systems: By factorizing the matrix using SVD, we can identify latent factors or
features that capture underlying patterns and preferences.

Image Compression: SVD is used in image compression techniques such as JPEG.

Matrix Completion: SVD-based techniques are used in matrix completion problems, where
missing or incomplete data needs to be imputed.

…
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Existence of the SVD for general matrices

For any matrix , there exist two orthogonal matrices ,  and a
nonnegative, ‘’diagonal’’ matrix  such that

where  and .

In a vector form

where .

X ∈ Rn×d U ∈ Rn×n V ∈ Rd×d

S ∈ Rn×d

Xn×d = Un×nSn×dV T
d×d

U TU = I V TV = I

Xn×d =
r

∑

j=1

Sjjujv
T
j

r = rank(X)
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Geometrical interpretation

Given any matrix  it defines a linear transformation:

The linear transformation  can be decomposed into three operations:

X ∈ Rn×d

f : Rd → Rn, f(x) = Xx.

f

X

linear transformation

x = U

rotation

S

scaling

V T

rotation

x
   
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Geometrical interpretation
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Different versions of SVD

Full SVD:

- Economy sized (thin, compact) SVD:

Xn×d = Un×nSn×dV T
d×d

Xn×d = Un×rSr×rV
T
r×d
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SVD n > d

101

SVD n < d
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Existence of the SVD

Consider  where  with
 (where ).

Let  and correspondingly form the matrix

Define also

for each .

A = XTX = V ΛV T Λ = diag(λ1, ⋯ ,λd)
λ1 ≥ ⋯ ≥ λr > 0 = λr+1 = ⋯ = λd r = rank(X) ≤ d

σi = √λi

Sn×d = ( )

diag(σ1, ⋯ ,σr) 0r×(d−r)

0(n−r)×r 0(n−r)×(d−r)

ui =
1
σi

Xvi ∈ Rn,

1 ≤ i ≤ r
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Existence of the SVD

Exercice

It is easy to show that the  are orthonormal vectors.

Completion if needed

Choose  (through basis completion) such that

is an orthogonal matrix.

It verifies

i.e.,

u1, ⋯ , ur

ur+1, ⋯ , un ∈ Rn

U = [u1 ⋯ un] ∈ Rn×n

XV = US,
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Existence of the SVD

Two possible cases:

 by construction.

, which is due to .

Consequently, we have obtained that

X[v1, ⋯ vrvr+1 ⋯ vd] = [u1 ⋯ urur+1un]( )

diag(σ1, ⋯ ,σr) 0r×(d−r)

0(n−r)×r 0(n−r)×(d−r)

1 ≤ i ≤ r : Xvi = σiui

i > r : Xvi = 0 XTXvi = Cvi = 0vi = 0

X = USV T
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Properties

The linear application characterized by  has the following properties:

 is the number of non zero singular values

X

rank(X) = r

kernel(X) = span(vr+1, ⋯ , vn)
range(X) = span(u1, ⋯ , ur)
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Low rank approximation of a matrix 

Goal

Approximate a given matrix  with a rank-k matrix, for a target rank k.

Motivations

Compression

De-noising

Matrix completion

X

X
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A first toy example

X<-matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),4,3,byrow=TRUE)1
X.svd<-svd(X)2
cat("Original matrix:\n")3

Original matrix:

print(X)1

     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

k<-21
cat("Approximation of rank 2:\n")2

Approximation of rank 2:

print(X.svd$u[,1:k]%*%diag(X.svd$d[1:k])%*%t(X.svd$v[,1:k]))1

     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

cat("A basis of the column space:\n")1

A basis of the column space:

print(X.svd$u[,1:k])1

           [,1]        [,2]
[1,] -0.1408767 -0.82471435
[2,] -0.3439463 -0.42626394



[3,] -0.5470159 -0.02781353
[4,] -0.7500855  0.37063688

cat("\nA basis of the kernel:\n")1

A basis of the kernel:

print(X.svd$u[,1:k])1

           [,1]        [,2]
[1,] -0.1408767 -0.82471435
[2,] -0.3439463 -0.42626394
[3,] -0.5470159 -0.02781353
[4,] -0.7500855  0.37063688
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Illustration of svd in image compression

See the demo of 

Example borrowed from 

The 512 × 512 colour image is stored as three matrices R, B, G of the same dimension 512×512
giving the intensity of red, green, and blue for each pixel. Naively storing this matrix requires 5.7Mb.

Tim Baumann

rich-d-wilkinson.github.io

library(tiff)1
library(rasterImage)2
peppers<-readTIFF("../Silo-Images/Peppers.tiff")3
plot(as.raster(peppers))4
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Illustration of svd in image compression

Below the SVD of the three colour intensity matrices, and the view the image that results from using
reduced rank versions with rank k ∈ {5, 30, 100, 300}

svd_image <- function(im,k){1
  s <- svd(im)2
  Sigma_k <- diag(s$d[1:k])3
  U_k <- s$u[,1:k]4
  V_k <- s$v[,1:k]5
  im_k <- U_k %*% Sigma_k %*% t(V_k)6
   ## the reduced rank SVD produces some intensities <0 and >1. 7
  # Let's truncate these8
  im_k[im_k>1]=19
  im_k[im_k<0]=010
  return(im_k)11
}12

13
par(mfrow=c(2,2), mar=c(1,1,1,1))14

15
pepprssvd<- peppers16
for(k in c(4,30,100,300)){17
  svds<-list()18
  for(ii in 1:3) {19
    pepprssvd[,,ii]<-svd_image(peppers[,,ii],k)20
  }21
  plot(as.raster(pepprssvd))22
}23
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Low rank approximation of a matrix 

Frobenius norm

The Frobenius norm of a matrix  is defined as

Rank k matrix 

Let

X

X

∥X∥2
F = ∑

ij

X 2
ij = trace(XTX) =

r

∑

j=1

σ2
j

X̂k

X̂k =
k

∑

j=1

σjujv
T
j
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Low rank approximation of a matrix

For any matrix  with non null singular values X ∈ Rn×d σ1 ≥ σ2 ≥   ⋯ ≥ σr

X̂k = arg min
X̂:rank(X̂)=k

∥X − X̂∥2
F

min
X̂:rank(X̂)=k

∥X − X̂∥2
F =

r

∑

j=k+1

σ2
j
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Proof

We have

We need to show that if  where  and  have k columns then

∥X − Xk∥2
F =

n

∑

i=k+1

σiuiv
⊤
i

2

F

=
n

∑

i=k+1

σ2
i

∥ ∥

Yk = AB⊤ A B

∥X − Xk∥2
F =

n

∑

i=k+1

σ2
i ≤ ∥X − Yk∥2

F .
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Proof

By the triangle inequality with the spectral norm, if  then
 .

Suppose  and  respectively denote the rank k approximation to  and  by SVD.

Then, for any 

X = X ′ + X ′′

σ1(X) ≤ σ1(X ′) + σ1(X ′′)

X ′
k X ′′

k X ′ X ′′

i, j ≥ 1

σi(X ′) + σj(X ′′) = σ1(X ′ − X ′
i−1) + σ1(X ′′ − X ′′

j−1)

≥ σ1(X − X ′
i−1 − X ′′

j−1)

≥ σ1(X − Xi+j−2) (since rank(X ′
i−1 + X ′′

j−1) ≤ rank (Xi+j−2))
= σi+j−1(X).
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Proof

Since , when  and  we conclude that for 

 Therefore,

σk+1(Yk) = 0 X ′ = X − Yk X ′′ = Yk i ≥ 1, j = k + 1

σi(X − Yk) + σk+1(Yk)

0

≥ σk+i(X).


∥X − Yk∥2
F =

n

∑

i=1

σi(X − Yk)2 ≥
n

∑

i=k+1

σi(X)2 = ∥X − Xk∥2
F .
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Low rank approximation of a matrix and projection

If , then we can assume columns  of 
where  is a set of orthonormal vectors for the linear space of columns of .
First, observe that

Optimum solution is the orthogonal projection

For each term ,the optimum solution is the projection of  onto
:

where 

rank(X̂) = k X̂i X̂ ∈ Ek = span{w1, w2, ⋯ , wk}
{w1, w2, ⋯ , wk} Xk

∥X − X̂∥2
F = ∑

i

∥Xi − X̂i∥2

∥Xi − v∥2
2 Xi

Ek = span{w1, w2, ⋯ , wk}

X̂i =
k

∑

j=1

⟨Xi, wj⟩wj = ΠEk
Xi.

ΠEk
= ∑

k
j=1 wjw

T
j
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Projection on the orthogonal subspace

Consider  the projection matrix on the space orthogonal to . More precisely, let us add
 such that  form an orthonormal basis of . Then,

ΠE⊥
k

Ek

wk+1, ⋯ , wn w1, ⋯ , wn Rn

ΠE⊥
k

=
n

∑

j=k+1

wjw
T
j

∥X − X̂∥2
F = ∥X − ΠEk

X∥2
F = ∥(I − ΠEk

)X∥2
F = ∥ΠE⊥

k
X∥2

F
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Relation to principal component analysis

Warning

 is considered as centered. This tranformation (cloud translation allows considerable
simplification)

Decomposition of 

Considering the orthonal projection on 

X

X

Ek

X = ΠEk
X + ΠE⊥

k
X
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Criterion

In terms of intertia, PCA maximizes the projected inertia (approximation) while minimizing the
ditances to the space of projection (error):

∥X∥2
F = ∥ΠEk

X∥2
F

approximation

+ ∥ΠE⊥
k

X∥2
F

error





IT = IE + IE⊥
k
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Best low rank approximation

where 

X̂k = ΠEk
X =

k

∑

j=1

σjujv
T
j = U∙,1:kS1:k,1:kV T

∙,1:k

X = U

n×n

  S

n×d

T

V

d×d

 
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Different views of the approximation

The approximation

can be considered in multiple ways:

approximation of the row

approximation of the columns

Notations

If  is a data table,

each row  is a description of an individual

each colum  is variable describing  individuals

∥X − X̂∥2
F

X

xT
i

Xj n
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Rows approximation (projection of the individuals)

Transposing the matrix the best low rank approximation becomes

where 

X̂T
k = ΠFk

XT =
k

∑

j=1

σjvju
T
j = V∙,1:kS1:k,1:kU T

∙,1:k

Fk = span{v1, ⋯ , vk}
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The approximation error

Each row  is approximated by

where  is the matrix composed of the vectors defining .

∥X − X̂∥2
F = ∥XT − X̂T∥2

F = ∑

i

∥xi − x̂i∥2
2

xi

x̂i = ΠFk
xi = VFk

V T
Fk

xi

VFk
Fk
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Projection of the variables

 is the projection matrix on 

and

ΠEk
E = span(u1, ⋯ , uk)

ΠE = UEk
U T

Ek

ΠEk
X = U1:n,1:kU T

1:n,1:kU1:n,1:n

(Ik,0k,n−k)

S1:n,1:kV T
1:d,1:d = U1:n,1:kS1:k,1:kV T

1:d,1:k

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k first principal components

where .

The principal component are the coordinates of the projection of the rows of  on :

C1:n,1:k = UEk
S1:k,1:k

S1:k,1:k = diag(σ1, ⋯ ,σk)

X Fk

C1:n,1:k = XV1:d,1:k
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Percentage of information

We have , thus

and

CT
∙,1:kC∙,1:k = S 2

1:k,1:k = diag(σ2
1, ⋯ ,σ2

k)

∥C∙,1:k∥2
F =

k

∑

j=1

σ2
j

∥C∙,1:k∥2
F

∥X∥2
F

=
∑

k
j=1 σ

2
j

∑

d
j=1 σ

2
j

∈ [0, 1]
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Correlations

ĉor(X∙,j, C∙,k) =
XT

∙,jC∙,k

∥X∙,j∥∥C∙,k∥
= cos ˆ(X∙,j, C∙,k)
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Duality

It is easy to show that

the columns of  are the eigenvector of 

the columns of  are the eigenvector of 

Thus the principal component of  are the eigenvectors of  and vice-versa

V XTX

U XXT

XTX XXT
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Multi Dimensional Scaling

129

Dimensionality reduction and manifold learning

Goal

Given pairwise

dissimilarities  or

high-dimensional input data 

reconstruct a lower dimensional map with embedded data 

Principle

Minimize an objective function quantiying the discrepancies between the  and the distances

w.r.t .

δij

{xi}i=1⋯...n

{yi}i=1⋯...n

δij
d(yi, yj)

{yi}i=1⋯...n
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A Brief history

The methodology of Multidimensional Positioning (Multidimensional Scaling, MDS) was born in the
USA in the 1950s

Works of Torgerson (1952, 1958),

Works of Shepard (1962),

initial applications to sparse data in

psychometrics,

marketing,

sensory analysis.
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Proximity measures

Distance

The function  from  in  is a distance if it satisfies the following properties:

Dissimilarity

The function  of  in  is a distance if it satisfies the following properties:

d E × E R+

∀i, j ∈ E,  dij = dji

∀i ∈ E,  dii = 0
∀i, j and k ∈ E,  dik ≤ dij + djk

δ E × E 𝕣+

∀i, j ∈ E,  δij = δji

∀i ∈ E,  δii = 0
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Classical scaling

Also known as Torgerson scaling, principal coordinate analysis (PCoA), …

Principle

assume that the dissimilarities are distances and

find the main coordinates that explain the distances.
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From distances to scalar product

How to calculate the distance matrix from ?

from where

## Distance and data table (continued)}

X

d2
ij =

p

∑

a=1

(x2
ia + x2

ja − 2xiaxja)

=
p

∑

a=1

x2
ia +

p

∑

a=1

x2
ja − 2

p

∑

a=1

xiaxja

D2 = diag(XX t)I(1,n) + I(n,1)diag(XX t)t − 2XX t



Let  be the centering matrix,

Centering of  in columns

Centering of  in rows

J

J = I −
1
n

I(n,n)

X

JX = X −
1
n

I(n,n)X

X

X tJ = X t −
1
n
X tI(n,n)X
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Distance and data table (continued)}

Problem: we know , we want : Double centeringD2 X

−
1
2
JD2J = −

1
2
Jdiag(XX t) ∗ I(1,n)J

−
1
2
JI(n,1)diag(XX t)tJ

+ JXX tJ

= XX t
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Low rank approximation and principal coordinates

The idea is to minimize

w.r.t 

We know the minimum is a low rank apprixation  of rank 

the analysis of the triple consists in replacing the matrix  by the matrix of the square of
dissimilarities 

Remark

If  is a distance matrix the solution  (first k principal components of ) is
optimal and PCoA is equivalent to PCA.

∥XXT − Y Y T∥2
F

rank(Y Y T ) = k

B = Y Y T k

B = (UEk
S1:k,1:k)(ST

1:k,1:kU
T
Ek

) = Y Y T

D2

Δ2

Δ2 Y = UEk
S1:k,1:d XTX
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Algorithm

1. Compute the matrix 

2. Double centering of :

3. Spectral decomposition of ~:

4. Let  be the representation dimension chosen for the solution.

 is the matrix of  largest eigenvalues, listed in descending order on the diagonal.

 is the matrix of  corresponding eigenvectors

The solution of the problem is

Δ2

Δ2

BΔ2 = −
1
2
JΔ2J

BΔ2

BΔ2 = UΛU t

k

Λ+ k

U + k

Y = U +Λ
1
2
+
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Optimized criterion

the optimized criterion is

with  of rank 

Remarks: If  is a dissimilarity matrix then some principal components will be negative!

L(X) = || −
1
2
J(D2(X) − Δ2)J||2

= ||XX t +
1
2
JΔ2)J||2

= ||XX t − BΔ2 ||2

BΔ2 k

Δ
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Models and functions for the MDS

MDS matches proximities  to distances  between objects:

with  a classical array of low dimensional data - the dissimilarities  are the data of the pb - the
distances  are the unknowns

the MDS finds a configuration  in a space of dimension , used to calculate distances 

δij dij

f : δij ⟶ dij(Y )

Y δij
dij(Y )

Y m dij
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In practice

the dissimilarities are marred by errors and one does not look for  such that

but rather

f

f(δij) = dij(Y )

f(δij) ≈ dij(Y )
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Error function

Definition of an error function

Raw global error (raw stress)

The global error is not very informative~: A large value of  does not necessarily indicate
bad result.

eij = (f(δij) − dij(Y ))2

σ2
r(Y ) = ∑

i>j

(f(δij) − dij(Y ))2

σ2
r(Y )
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Normalized error function

Normalized Stress

A general form

σ2
n(Y ) =

∑i>j (f(δij) − dij(Y ))
2

∑i>j d
2
ij(Y )

σ2(Y ) = ∑

i>j

wij(f(δij) − dij(Y ))
2
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Different approaches

metric: quantitative approach

non-metric : qualitative approach

Metric approach

Algebraic transformation of  (e.g.  )

With

assurance of the existence of an  configuration of dimension  at most such that

Non-metric approach

δij f(δij) = aδij + b

f(δij) = δij + b(1 − I(i=j))

Y n − 2

f(δij) = dij(Y )
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Sammon’s Projection

Metric Method: “Projection” into a space of low dimension (1,2, or 3)

 configuration sought

Euclidian distance

Y = (y1, … , yn)t

dij = d(yi, yj)
= ∥yi − yj∥2
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Sammon stress function

Sammon searches for the  minimizing

 identity

Remarks:

Sammon’s Stress

is invariant to rotations, translation and scaling

focuses on small distances

yi

S(Y ) =
1

∑i<j δij

∑i<j(δij − dij(Y ))2

δij

f

wkl = 1
(∑i<j δij)δkl

145



Minimisation of Sammon’s Stress

minimisation of a function from  to 

Global minimum is difficult to reach

Gradient descent

Remarks

Many possible optimmisation methods

Initial Random configuration

Rn×k R
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Example in R

sammon from library MASS

  Sammon's Non-Linear Mapping

Description
 One form of non-metric multidimensional scaling. 

Usage
 sammon(d, y = cmdscale(d, k), k = 2, niter = 100, trace = TRUE,
 magic = 0.2, tol = 1e-4)
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Sammon gradient

Let show that

From chain rule

1. 

2. 

∂S(Y )
∂yik

= −2∑
j<i

wij

δij − dij

dij
(yik − yjk)

∂S(Y )
∂yik

=
∂S(Y )

∂∥yi − yj∥

1

×
∂∥yi − yj∥

∂yik
2





∂S(Y )
∂dij

== −2∑j<i wij(δij − dij)

∂∥yi−yj∥
∂yik

= ∂dij
∂d2

ij

∂d2
ij

∂yik
= yik−yjk

dij
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Sammon gradient descent

At iteration q

y
(q+1)
ik := y

(q)
ik − η

∂S(Y )
∂yik
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Example Ekman colors

Ekman presents similarities for 14 colors which are based on a rating by 31 subjects where each
pair of colors was rated on a 5-point scale (0 = no similarity up to 4 = identical). After averaging, the
similarities were divided by 4 such that they are within the unit interval. Similarities of colors with
wavelengths from 434 to 674 nm.
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Example Ekman colors
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Example Classical scaling
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t-SNE
Variation of Stochastic Neighbor Embedding

easier to optimize,

produces significantly better visualizations by reducing the tendency

scalable: for very large data sets, t-SNE can use random walks on neighborhood graphs
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Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) converts distances into conditional probabilities that
represent similarities

Conditional probabilities 

Interpretation

Probability that  would pick  as its neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at :

pj|i

pj|i =
exp(−∥xi − xj∥2/(2σ2

i ))

∑k≠i exp(−∥xi − xk∥2/2σ2
i )

.

xi xj

xi
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Stochastic Neighbor Embedding

similar conditional probability between the , which we denote by .

Conditional probabilities, 

with .

SNE can also be applied directly to similarity data

provided similarities can be interpreted as conditional probabilities we set

yi qj|i

qj|i

qj|i =
exp(−∥yi − yj∥2)

∑k≠i exp(−∥yi − yk∥2)
.

qi|i = 0

155



Cost function

A natural measure of the faithfulness with which  models  is the Kullback-Leibler divergence
(equal to the cross-entropy up to an additive constant).

the SNE cost function focuses on retaining the local structure of the data in the map (for reasonable
values of the variance of the Gaussian in the high-dimensional space).

qj|i pj|i

C = ∑

i

KL(Pi∥Qi) = ∑

i

∑

j

pj|i log
pj|i

qj|i
,
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Selecting the variance 

SNE performs a binary search for the value of  that produces a  with a fixed perplexity that is
specified by the user

Perplexity

where  is the Shannon entropy of  measured in bits

Remarks

the perplexity increases monotonically with the variance 

smooth measure of the effective number of neighbors

Typical values are between 5 and 50.

σi

σi Pi

Perp(Pi) = 2H(Pi) ,

H(Pi) Pi

H(Pi) = −∑
j

pj|i log2 pj|i .

σi
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Gradient descent

Gradient

Interpretation

The gradient may be interpreted as the resultant force created by a set of springs between the map
point  and all other map points .

force exerted by the spring between  and  is proportional to its length

also proportional to its stiffness 

Initialisation

 points randomly sampled from an isotropic Gaussian with small variance that is centered around
the origin

∂C
∂yi

= 2∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj) .

yi yj

yi yj

(pj|i − qj|i + pi|j + qi|j)

n
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Gradient in practice

To speed up the optimization and to avoid poor local minima, a relatively large momentum term
is added to the gradient:

where  indicates the solution at iteration ,  indicates the learning rate, and  represents the
momentum at iteration .

In addition, in the early stages of the optimization, Gaussian noise is added to the map points
after each iteration. Gradually reducing the variance of this noise performs a type of simulated
annealing

Y (t) = Y (t−1) + η
∂C
∂Y

+ α(t)(Y (t−1) − Y (t−2)
) ,

Y (t) t η α(t)
t
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t-Distributed Stochastic Neighbor Embedding

cost function of SNE is difficult to optimize

t-SNE suffers from the “crowding problem”

t-SNE vs SNE

1. Uses a symmetrized version of the SNE cost function with simpler gradients

2. Student-t distribution rather than a Gaussian to compute the similarity between two points in the
low dimensional space.
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Symmetric SNE

where  and  to zero.

 and

 for all .

Joint probabilies 

Joint probabilies 

C = KL(P∥Q) = ∑

i

∑

j

pij log
pij

qij
,

pii qii

pij = pji

qij = qji i, j

pij

pij =
exp(−∥xi − xj∥2/2σ2)

∑k≠l exp(−∥xk − xl∥2/2σ2)

qij

qij =
exp(−∥xi − xj∥2)

∑k≠l exp(−∥xk − xl∥2)
.
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t-SNE

Problems when a high-dimensional datapoint  is an outlier, the values of  are extremely small
for all , so the location of its low-dimensional map point  has very little effect on the cost
function.

. ensures that  ,

each  makes a significant contribution to the cost function.

t-SNE Gradient

The main advantage of the symmetric version of SNE is the simpler form of its gradient, which is
faster to compute.

symmetric SNE produces maps that are just as good as asymmetric SNE

xi pij
j yi

pij =
pj|i+pi|j

2n ∑j pij > 1
2n ∀xi

xi

∂C
∂yi

= 4∑
j

(pij − qij)(yi − yj) .
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The Crowding Problem

Modeling the small distances accurately has detrimental effect on moderate distances
representation

the crowding problem is not specific to SNE

the area of the two-dimensional map that is available to accommodate moderately distant
datapoints will not be nearly large enough compared with the area available to accommodate
nearby datapoints.
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Mismatched tails can compensate for mismatched dimensionalities

-distribution for the 

Student distribution with a single degree of freedom also known as a Cauchy distribution

Gradient

t qij

qij =
(1 + ∥yi − yj∥2)−1

∑k≠l(1 + ∥yk − yt∥2)−1

∂C
∂yi

= 4∑
j

(pij − qij)(yi − yj)(1 + ∥yi − yj∥2)−1 . (1)
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Two optimization tricks

“Early compression”

Force the map points to stay close together at the start of the optimization.

Easy for clusters to move through one another and thus to explore the space of solutions

implemented by adding an additional L2-penalty to the cost function that is proportional

“Early exaggeration”

Multiply all of the ’s by, for example, 4, in the initial stages of the optimization.

natural clusters in the data tend to form tight widely separated clusters in the map.

creates a lot of relatively empty space in the map

makes it much easier for the clusters to move around relative to one another

pij
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Uniform manifold approximation and projection (UMAP)

UMAP works directly with similarities and uses cross-entropy as a criterion.

Distance in high dimensional space

 is the distance between  and , which UMAP does not require to be Euclidean.

 is the distance to the nearest neighbor of .

 is the normalizing factor, which is chosen by a specific Algorithm and plays a similar role to
the perplexity-based calibration of  in t-SNE.

Symmetrization is carried out by fuzzy set union

vj|i = exp [(−d(xi,xj) − ρi)/σi]

d(xi,xj) xi xj)
ρi i

σi

σi

vij = vj|i + vi|j − vj|ivi|j

166



Uniform manifold approximation and projection (UMAP)

Low dimensional similarities

where  and  are user-defined positive values

Cost function (cross-entropy)

Optimization process is done by stochastic gradient descent

wij = (1 + a∥yi − yj∥2b
2 )−1

a b

CUMAP = ∑

i≠j

vij log
vij

wij

+ (1 − vij) log
1 − vij

1 − wij
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UMAP vs t-SNE

In terms of performance,

UMAP is often considered to produce more stable and consistent results than t-SNE,

especially when dealing with large datasets.

On the other hand,

t-SNE is often considered to produce more visually appealing results,

especially when dealing with small datasets.
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Word Embedding

169

Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence matrix

Two common co-occurrence matrix

the word-document matrix

the word-word matrix.
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Word-document matrix

In a Word-document matrix, each row represents a word in the vocabulary and each column
represents a document from some collection of documents.

Number of words occurence in 4 Shakespeare plays (from speech and langage processing)

171

Word-Word matrix

In the Word-context matrix the columns are labeled by words rather than documents.

each cell records the number of times the row (target) word and the column (context) word co-
occur in some context in some training corpus.

Context

a context could be the document, in which case the cell represents the number of times the two
words appear in the same document.

smaller contexts are common: generally a window around the word



word-word matrix from a Wikipedia corpus (from speech and langage processing)
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Cosine for measuring similarity

The cosine similarity metric (or empirical correlation) between two word vectors  and  (lines of a
word-document or word-word matrix)

v w

cos(v, w) =
vTw

∥v∥∥w∥
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TF-IDF: Weigthing terms in the vector

Term frequency (tf)

Raw frequency  is very skewed and not very discriminative.

Usually squashed by using the : a word appearing 100 times in a document doesn’t make
that word 100 times more relevant

Inverse document frequency

The second factor in tf-idf is used to give a higher weight to words that occur only in a few
documents.

where  is the total number of documents, and  is the number of documents in which term 
occurs.

tft,d = count(t, d)
log10

tf t,d = log10 (count(t, d) + 1)

idft = log10(
N

df t
)

N dft t
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TF-IDF: Weigthing terms in the vector

The tf-idf weighted value  for word  in document  thus combines term frequency  with
:

 A tf-
idf weighted term-document matrix. Note that the tf-idf weighting has eliminated the importance of the
ubiquitous word good and vastly reduced the impact of the almost-ubiquitous word fool.

wt,d t d tft,d
idf

wt,d = tft,d × idft
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Pointwise Mutual Information (PMI)

An alternative weighting function to tf-idf, PPMI (positive pointwise mutual information), is used for
term(target)-term(context)-matrices.

Target word, word we focus on.

Context words surrounding the target word

The pointwise mutual information between a target word  and a context word  (Church and
Hanks 1989, Church and Hanks 1990) is defined as:

w c

PMI(w, c) = log2
P(w, c)

P(w)P(c)
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Positive PMI (called PPMI)

Negative PMI values (which imply things are co-occurring less often than we would expect by
chance) tend to be unreliable unless our corpora are enormous.

Positive PMI

replaces all negative PMI values with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and
Nitta 1994)

PPMI(w, c) = max(log2
P(w, c)

P(w)P(c)
, 0)
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Applications of the tf-idf or PPMI vector models

Principle

Computing two documents (or word) similarity after transformation.

Given two documents  and , the similarity is .

Applications

Documents : information retrieval, plagiarism detection, news recommender systems, and even
for digital humanities tasks like comparing different versions of a text to see which are similar to
each other.

Words : finding word paraphrases, tracking changes in word meaning, or automatically
discovering meanings of words in different corpora.

d1 d2 cos(d1, d2)
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Latent Semantic Analysis (LSA)

Goal and assumptions

extracting and representing the underlying meaning of words in a corpus of texts.

words that occur in similar contexts have similar meanings.

Principle

LSA uses singular value decomposition (SVD) to identify latent, or hidden, patterns in word co-
occurrence data.
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Latent Semantic Analysis

LSA uses SVD on the matrix of word-document matrix to identify the latent concepts (contexts,
topics, …) that underlie the relationships between words in the corpus:  with classical
low rank approximation 

W = USV T

UkSkV
T
k
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Latent Semantic Analysis

The values on the main diagonal of  indicate the ‘importance’ of each of the k main ‘latent
concepts’ (or factors).

For each of the document, the corresponding row of  allows us to see which concepts are
present and with what weights.

For each of the concept, the associated column of  indicates which terms form the concept
(and with what weights).

Calculating the similarity between a term and a document involves choosing:

the row  corresponding to the document in the matrix ,

the row  corresponding to the term in the matrix ,

and then computing the product .

To determine the similarity of a term to each of the documents

Sk

Uk

Vk

u Uk

v Vk

uSkvT

UkSkvT



Conversely, we can determine the similarities between a document  and all the terms throughu

uSkVT
k
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Latent Dirichlet Allocation (LDA)

History

In the context of population genetics, LDA was proposed by J. K. Pritchard, M. Stephens and P.
Donnelly in 2000.

LDA was applied in machine learning by David Blei, Andrew Ng and Michael I. Jordan in 2003.

Principle

Latent Dirichlet Allocation (LDA) is a probabilistic generative model that assumes that

each document is generated by a mixture of latent topics

each topic is generated by a mixture of words from the vocabulary.

Documents are represented as random mixtures over latent topics, where each topic is
characterized by a distribution over all the words.
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LDA Generative process

For a corpus  consisting of  documents

1. Choose topic parameter vector for document : , where  and
 is a Dirichlet distribution with a symmetric parameter  which typically is sparse ( ).

2. Choose the word parameters vector of topic : , where  and 
typically is sparse

3. For each of the word positions , where , and 

a. Choose a topic 

b. Choose a word 

D M

i θi ∼ Dir(α) i ∈ {1, … ,M}
Dir(α) α α

k φk ∼ Dir(β) k ∈ {1, … ,K} β

i, j i ∈ {1, … ,M} j ∈ {1, … ,Ni}

zi,j ∼ Cat(θi).
wi,j ∼ Cat(φzi,j).
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Latent Dirichlet Allocation (LDA) in summary

φk=1…K ∼ DirichletV (β)
θd=1…M ∼ DirichletK(α)

zd=1…M,w=1…Nd
∼ CategoricalK(θd)

wd=1…M,w=1…Nd
∼ CategoricalV (φzdw)

P(W , Z, θ, φ;α,β) =
K

∏

i=1

P(φi;β)
M

∏

j=1

P(θj;α)
N

∏

t=1

P(Zj,t ∣ θj)P(Wj,t ∣ φZj,t),
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Latent Dirichlet Allocation (LDA) estimation

Estimating the parameters could be achieved through Variationnal Bayes EM algorithm.
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Example of LDA in Action

Corpus of Three Documents

1. “cats dogs pets love”

2. “dogs bark loud outside”

3. “politics government election law”

Step 1: Identify Topics

After running LDA, it may discover two topics (dist. over words): - Topic 1 (Pets): {cats, dogs, pets,
bark, love} - Topic 2 (Politics): {politics, government, election, law}

Step 2: Assign Topics to Documents

- Document 1 -> $90\%$ Topic 1, $10\%$ Topic 2
- Document 2 -> $80\%$ Topic 1, $20\%$ Topic 2
-   Document 3 -> $95\%$ Topic 2, $5\%$ Topic 1
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Pro and Cons

Advantages of LDA

Unsupervised Learning: No labeled data needed.

Interpretable Topics: Extracts meaningful topics from text.

Limitations of LDA

Fixed Number of Topics: Must specify the number of topics beforehand.

Bag-of-Words Assumption: Ignores word order and context.

Computationally Expensive: Requires approximation methods for inference.

Applications of LDA
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Word2vec

Embeddings

more powerful word representation

short dense vectors:  ranging from 50-1000, rather than the much larger vocabulary size  or
number of documents 

dense vectors work better in every NLP task than sparse vectors

Skip-gram with negative sampling

The skip-gram algorithm is one of two algorithms in a software package called word2vec

The other algorithm is CBOW (continuous bag of words)

d |V |
D
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Embedding derived from classification

Data : words and their context (neighboring words ( )

… lemon, a [tablespoon of apricot jam, a] pinch … c1 c2 w c3 c4

Classification task

Given a tuple  of a target word  paired with a candidate context word  (for
example (apricot, jam), or perhaps (apricot, aardvark)) return the probability that  is a real context
word (true for jam, false for aardvark):

Similarity

we rely on the intuition that two vectors are similar if they have a high dot product (after all, cosine is
just a normalized dot product). In other words:

±L

(w, c) ∈ Rd × Rd w c
c

P(ywc = 1|w, c) = 1 − P(ywc = 0|w, c)
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From dot product to logistic regression

Logit

Criterion

The criterion is a kind of likelihood including positive examples (observed association) and negative
examples (non observed associations). In fact skip-gram with negative sampling (SGNS) uses more
negative examples than positive examples (with the ratio between them set by a parameter ).

P(ywc = 1|w, c) =
1

1 + exp(−cTw)

k

L = ∑

w,c:ywc=1

logP(ywc = 1|w, c) + ∑

w′,c′:yw′c′=0

logP(yw′c′ = 0|w′, c′)
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Example

The learning algorithm for skip-gram embeddings takes as input a corpus of text

random embedding vector initialization for each of the N vocabulary words

iteratively shift the embedding of each word  to be more like the context words

Let’s start by considering a single piece of training data:

… lemon, a [tablespoon of apricot jam, a] pinch …

w
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Skip-gram model learns two separate embeddings
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Final embeddings

skip-gram outputs the target matrix  and the context matrix .

It’s common to just add them together, representing word i with the vector .

Alternatively we can throw away the C matrix and just represent each word i by the vector .

As with the simple count-based methods like tf-idf, the context window size L affects the
performance of skip-gram embeddings, and experiments often tune the parameter L on a
devset.

W C

wi + ci

wi
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Transformers
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The nature of transformers

Deep learning architecture based on attention mechanisms

Weight the importance of different tokens in a sequence to model long-range dependencies
efficiently

History of AI leading to chatGPT
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The nature of transformers

A classical transformer is a
function

 is a finite set (vocabulary) (Open AI uses 50,000 token as vocabulary)

 be a sequence of token, where each  (In practice context varies from 1 to n, the
blocksize)

 is the probability of  the jth token in 

Remarks

T (w1:n) =
⎡

⎢

⎣

p1

⋮
p|V |

⎤

⎥

⎦

The nature of transformer

V

w1:n wi ∈ V

pj w(j) V
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Optimized criteria

Transformers typically optimize different criteria depending on the task they are trained on.

Causal Language Modeling (CLM) / Autoregressive Loss

Used in: GPT models

Objective: Predict the next token given the previous tokens

The training set is a set of sequences  of  tokens :

where  denotes the tokens preceding position  in the sequence 

The criterion is a kind of pseudo log-likelihood.

(sj) n sj = (wj
1,wj

2, … ,wj
n)

LCLM = −∑
j

n

∑

t=1

∑

c∈V

II
w

j
t=c

logP(wj
t = c|wj

1:t−1)

w
j
1:t−1 t j

If nothing is learned each token has the same probability of appearing: the largest possible value of
the criterion is

− log
1

|V |
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Masked Language Modeling (MLM)

Used in: BERT models

Objective: Predict randomly masked tokens in a sentence.

Let  be the set of masked positions in the sequence :Mj ⊂ {1, … ,n} (sj)

LMLM = −∑
j

∑

t∈Mj

∑

c∈V

II
w

j
t=c

logP(wj
t = c|wj

(1:n)∖M)
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Conditional Language Modeling / Translation Loss

Used in: T5, BART

Objective: Predict an output sequence given an input sequence (e.g., translation,
summarization).

Given input sequence  and output sequence :

Other losses

Transformers exact objective functions depends on type of considered problems

wj = (wj
1, … ,wj

n) vj = (vj1, … , vjm)

LSeq2Seq = −∑
j

m

∑

t=1

∑

c∈V

II
v
j
t=c

logP(vjm = c|vj1:m−1,wj
1:n)
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Initial embedding

The token are first embedded in a  dimensional space (see previous topic)

the representation  is independent of context.

Let .

Initial embedding

d

xi = Ewi

X = x1:n = w1:nE
⊤ ∈ Rn×d
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A minimal self-attention architecture for decoder

Attention is a communication mecanism between the tokens of a sequence.

Self attention proposes a contextual representation  of  as a linear combination the sequence:

 aggregates the past between query (current postion i) and key (other past position j)

→

In decoder the future cannot communicate with the past

→

the structure of the attention matrix is thus lower triangular in classical GPT decoder,

it is not necessary to have a triangular attention matrix (i.e. sentiment analysis)

 is learned matrix of parameters and can be seen a projection matrix modifying the embedding
of the linear combination of sequence tokens. Let consider V as a square matrix .

hi xi

hi = V .
n

∑

j=1

αijxj

hi

∑j αij = 1

∀j > i,αij = 0

V
d × d
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Attention and matrix notation

, where

→ Q is a matrix that modifies the embedding of the token we are looking for. Let consider V
as a square matrix .

→ K is a matrix that modifies the embedding of the word we are comparing against. Let
consider V as a square matrix .

Matrix notation

Remark

In the original paper (“Attention is all you need”, 2017) the notation is different and notes:

αij = softmax(xT
i Q

TKxj) = exp(xT
i Q

TKxj)
∑

n
j=1 exp (xT

i Q
TKxj)

d × d

d × d

H = = Attention(Q,K,V,X) = softmax(X(QTK)XT )XV T

⎡

⎢

⎣

hT
1

⋮

hT
n

⎤

⎥

⎦

 as ,

 as , and

 as 

XQT Q

XK T K

XV T V
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Ilustration of self-Attention

Self-attention block in auto-encoder
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Interpretation of Q, K, V

The query is modified version of an initial embedding 

The Key is modified version of an initial embedding 

Value is modified version of an initial embedding , which should include contextual
information since it is a transformation of a linear combination of the context tokens…

Attention Concept Sometimes Similar to

Query Target (What to focus on)

Key Context (What to compare against, the source of
information)

Value Contextual embedding

qi = Qxi

ki = Kxi

vi = V xi
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Important details

The original paper introduces many add-ons, which much improve the transformers performances:

Positional encoding for introducing the notion of order in the sequence

FFN: Feed Forward Neural layer.

→ As the attention is a linear operation composed with a softmax, a Feed Forward Neural
layer is added for making the function more flexible

Multi-blocks: In the spirit of Deep learning blocks of attention and FNN are repeated…

Dropout layers are used for prevenring overfitting (from “Dropout a simple way to prevent NN
from overfitting” Hinton)

Simple trick of Skip connection for stabilizing the gradient (from “Deep learning residuals for
image recognition”)

→ The deep learning structure tends to cause problems with gradient computation
(vanishing or exploding gradient)

In order to make tokens comparable, they are all normalized at the output of each blocks:

→ The classical z-transformed is applied (with Bayesian correction)

Multi-head attention: computes multiple attention functions (heads) in parallel
205

Positional encoding

Attention do not consider order of tokens !

Incorporating information about the order of tokens is achieved by adding positional encodings
to the input embeddings

The original transformer implementation uses:

even indices:

odd indices:

It ensures that each position is assigned a unique encoding

PEpos,2i = sin(
pos

10000
2i
d

)

PEpos,2i+1 = cos(
pos

10000
2i
d

)

206



Feed Forward Neural Network

Attention mechanism operates linearly to capture dependencies between tokens in a sequence

Non-linearity enhance the model’s expressive power

Structure of the FFN:

Each FFN consists of two linear transformations with a non-linear activation function in between:

1. First Linear Transformation: embedding of the input from the model’s dimensionality  to a
higher-dimensional space

2. Activation Function: A non-linear function is applied to introduce non-linearity

3. Second Linear Transformation: projects the output back to the original dimensionality

where  and  are weight matrices, and  and  are bias vectors.

d

FFN(x) = W2 ⋅ ReLU(W1 ⋅ x + b1) + b2

W1 W2 b1 b2
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Skip connection (original paper “Deep Residual Learning for Image

Recognition” 2015 by He et al.)

Skip connection

Skip connections address the vanishing (and exploding) gradient problems

Consider a neural network layer with an input  and a desired underlying function .

Incorporating a skip connection, the layer is restructured to model a residual
. Thus, the output of this layer becomes:

Benefits:

Enhanced Gradient Flow

Faster convergence and higher accuracy

x H(x)

F(x) = H(x) − x

y = F(x) + x
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Multi-head attention

Multi-Head Attention captures various aspects of the data.

The mechanism computes multiple attention functions (heads) in parallel.

Each head operates on linearly projected versions of the queries, keys, and values

Each head  computes the attention scores

where  is the dimension of the key vectors

Concatenation

The outputs of all heads are concatenated and projected through a final linear layer:

k

Attention(Qk,Kk,Vk) = softmax (

XQT
kKkX

√dk
)XV T

k

dk

MultiHead(Q,K,V ) = Concat(head1, … , headh)P

The multi head matrix is , where -  is the number of head, -  the size of the
projection space of head k -  is a projection matrix combining the heads.

Benefits

Diverse Representations: Each head can capture different features or relationships within the
data, enabling the model to understand various aspects of the input (grammar, style,
“meaning”…).

→ Parallel Processing: Multiple heads allow the model to process different parts of the
sequence simultaneously, improving efficiency.

→ Enhanced Capacity: By attending to information from different subspaces, the model can
capture complex patterns and dependencies.

d × d h dk = d/h
P
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Fine tuning

After a pretraining step that ressembles closely to a decoder…

ChatGPT fine tuning (from A. Karpathy lecture)
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Exercices
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Schur Complement Lemma

Let A be a square matrix partitioned as follows:

Assuming that  is invertible, the Schur complement of  in A is defined as:

The lemma states that if A is invertible, then A is invertible if and only if S is invertible. Additionally,
the inverse of A can be expressed as:

To demonstrate the Schur complement lemma, we can follow these

A = [ ]

A11 A12

A21 A22

A11 A11

S = A22 − A21A
−1
11 A12

A−1 = [ ]

A−1
11 + A−1

11 A12S
−1A21A

−1
11 A−1

11 A12S
−1

−S−1A21A
−1
11 S−1



1. Start with the matrix equation , where  is invertible and partitioned as described
above.

2. Write the equation using the partitioned form of matrix A:

3. Apply block matrix operations to rewrite the equation:

AX = B A

[ ] [ ] = [ ]

A11 A12

A21 A22

X1

X2

B1

B2

A11X1 + A12X2 = B1

A21X1 + A22X2 = B2

4. Solve the first equation for :

5. Substitute this value of  into the second equation:

6. Simplify the equation:

7. We can see that the coefficient matrix for  is the Schur complement,

8. Therefore,  can be calculated as:

9. Finally, we can substitute the values of  and  to obtain the solution vector :

X1

X1 = A−1
11 (B1 − A12X2)

X1

A21A
−1
11 (B1 − A12X2) + A22X2 = B2

SX2 = B2 − A21A
−1
11 B1

X2

S = A22 − A21A
−1
11 A12

X2

X2 = S−1(B2 − A21A
−1
11 B1)

X1 X2 X

X = [ ] = [ ] =
X1

X2

A−1
11 (B1 − A12S

−1(B2 − A21A
−1
11 B1))

S−1(B2 − A21A
−1
11 B1)

[ ] [ ]

A−1 + A−1A S−1A A−1 A−1A S−1 B
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Conditional Gaussian

Demonstrate the form of the distribution of  when both vectors are gaussian.

We have the joint gaussian distribution of :

We can proceed in three step:

1. Compute  the concentration matrix

2. Write the joint distribution into a sum of marginal in  and conditonal in 

3. Derive the conditional distribution.

Concentration matrix

The joint covariance matrix is partitioned as:

x1|x2

( )

x1

x2

( ) ∼ N (μ, Σ)
x1

x2

Σ−1 = Λ
x2 x1

The concentration matrix can be expressed as:

where the blocks of the concentration matrix are given by:

Here,  is obtained using the Schur complement of  in

:

Decompose the joint distribution

The quadratic form of the joint distribution decomposes as follow

Σ = [ ].
Σ11 Σ12

Σ21 Σ22

Λ = Σ−1

Λ = [ ],
Λ11 Λ12

Λ21 Λ22

Λ11 = (Σ11 − Σ12Σ−1
22 Σ21)−1, Λ12 = −Λ11Σ12Σ−1

22 ,

Λ21 = −Σ−1
22 Σ21Λ11, Λ22 = Σ−1

22 + Σ−1
22 Σ21Λ11Σ12Σ−1

22 .

Λ11 Σ11

Σ

Λ11 = (Σ11 − Σ12Σ−1
22 Σ21)−1.



Replacing the  with their expression in function of the , we eventually get

where

Derive the conditional distribution

The joint distribution of , where

can be expressed as a product of the marginal distribution of and the conditional distribution of
 given .

Q = (x1 − μ1)TΛ11(x1 − μ1) + 2(x1 − μ1)TΛ12(x2 − μ2) + (x2 − μ2)TΛ22(x2 − μ2)

Λij Σij

Q =(x1 − (μ1 + Σ12Σ−1
22 (x2 − μ2)))TΣ−1

1|2(x1 − (μ1 + Σ12Σ−1
22 (x2 − μ2)))+

(x2 − μ2)TΣ−1
22 (x2 − μ2)

Σ1|2 = (Σ11 − Σ12Σ−1
22 Σ21)−1 = Λ11

(x1,x2) ∼ N(μ, Σ)

μ = [ ], Σ = [ ],
μ1

μ2

Σ11 Σ12

Σ21 Σ22

x2
x1 x2

The joint log-probability is:

Expanding each term: 1. The marginal distribution of :

with the log-density:

2. The conditional distribution of given :

where

The log-density is:

log p(x1,x2) = log p(x2) + log p(x1|x2).

x2

p(x2) ∼ N(μ2, Σ22),

log p(x2) = −
1
2

(x2 − μ2)TΣ−1
22 (x2 − μ2) −

1
2

log |Σ22| −
d2

2
log(2π).

x1 x2

p(x1|x2) ∼ N(μ1|2, Σ1|2),

μ1|2 = μ1 + Σ12Σ−1
22 (x2 − μ2), Σ1|2 = Σ11 − Σ12Σ−1

22 Σ21.



Thus, the joint distribution can be written as:

log p(x1|x2) = −
1
2

(x1 − μ1|2)TΣ−1
1|2(x1 − μ1|2) −

1
2

log |Σ1|2| −
d1

2
log(2π).

log p(x1,x2) = log p(x2) + log p(x1|x2).
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Stochastic Gradient and linear regression

The Mean Squared Error can be expressed as a sum of the available sample  :

The gradient

is expressed as

Online regression code

(yi, xi)i

Q(w) =
1
n
∑

i

∥yi − wtxi∥
2 =

1
n
∑

i

Qi(w)

∇Qi(w) = −2xi(yi − wtxi)

library(ggplot2)1
library(patchwork)  # Pour afficher les graphes côte à côte2

3
# Fonction de régression linéaire séquentielle4
regression.online <- function(X, Y, max.iteration = 300) {5
  p <- ncol(X)6
  n <- nrow(X)7
  X <- cbind(1, X)  # Ajout de l'intercept8



Comparison with batch approach

  9
  shuffling <- sample(1:n, n)10
  X <- X[shuffling, ]11
  Y <- Y[shuffling]12
  Q<-rep(0,max.iteration)13
  W <- rep(0, p + 1)  # Initialisation des coefficients14
  for (i in 1:max.iteration) {15
    idx <- (i - 1) %% n + 116
    x <- drop(X[idx,])  # Sélection d'un point (matrice 1x(p+1))17
    y <- Y[idx]18
    W <- W + (1 / i) * x * (y - drop(rbind(W) %*% cbind(x)))  # Mise à jour du vecteur de poids19
    Q[i]<-mean((Y - X %*% cbind(W))^2)20
  }21

22
  return(list(W=W,Q=Q))23
}24

# Génération des données1
set.seed(123)2
x <- rnorm(200, sd = 2)3
y <- 1 + 3 * x + rnorm(200, sd = 1)4

5
# Ajustement avec lm6
lm_model <- lm(y ~ x)7
lm_coef <- coef(lm_model)  # Coefficients de lm8

9
# Ajustement avec la régression séquentielle10
online_res <- regression.online(matrix(x, ncol = 1), y)11
online_coef<-online_res$W12

13
# Création d'un dataframe pour ggplot14
df <- data.frame(x = x, y = y)15

16
# Graphique 1 : Régression classique avec lm17
p1 <- ggplot(df, aes(x = x, y = y)) +18

MSE minimisation

  geom_point(color = "gray50", alpha = 0.6) +  19
  geom_abline(intercept = lm_coef[1], slope = lm_coef[2], color = "blue", lwd = 1.2) +20
  annotate("text", x = min(x), y = max(y), 21
           label = sprintf("lm: y = %.2f + %.2f*x", lm_coef[1], lm_coef[2]),22
           hjust = 0, color = "blue", size = 5) +23
  labs(title = "Régression classique (lm)",24
       x = "x", y = "y") +25

th i i l()26



library(ggplot2)1
2

# Données pour la courbe de la régression online3
df_online <- data.frame(4
  MSE = online_res$Q, 5
  Iteration = 1:length(online_res$Q)6
)7

8
# MSE de la régression classique9
mse_lm <- mean(lm_model$residuals^2)10

11
# Graphique avec ggplot212
ggplot(df_online, aes(x = Iteration, y = MSE)) +13
  geom_line(color = "black", size = 1, aes(linetype = "Online")) +  # Courbe Online en noir14
  geom_hline(aes(yintercept = mse_lm, linetype = "Classical"), color = "red", size = 1) +  # Ligne lm en rouge15
  scale_linetype_manual(name = "Méthode", values = c("Online" = "solid", "Classical" = "dashed")) +  # Légende16
  labs(17
    title = "Évolution du MSE en régression online",18
    x = "Itération",19
    y = "MSE"20
  ) +21
  theme_minimal()22
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What is the KL (Kullback–Leibler) divergence between two

multivariate Gaussian distributions?

 between two distributions  and  of a continuous random variable is given by:

And probabilty density function of  is given by:

Now, let our two Normal distributions be  and , both  dimensional.

KL divergence P Q

DKL(p||q) = ∫

x

p(x) log
p(x)
q(x)

multivariate Normal distribution

p(x) =
1

(2π)k/2|Σ|1/2
exp(−

1
2

(x − μ)TΣ−1(x − μ))

N (μp, Σp) N (μq, Σq) k

Now, since  in the second term , we can write it as
, where  is the trace operator. And using the trace trick (eq 16

of section 1.1 from ), we can write it as .

The second term now is,

The expectation and trace can be interchanged to get,

DKL(p||q) = Ep [log(p) − log(q)]

= Ep [
1
2

log
|Σq|
|Σp|

−
1
2

(x − μp)TΣ−1
p (x − μp) +

1
2

(x − μq)TΣ−1
q (x − μq)]

=
1
2

Ep [log
|Σq|
|Σp|

]−
1
2

Ep [(x − μp)TΣ−1
p (x − μp)] +

1
2

Ep [(x − μq)TΣ−1
q

=
1
2

log
|Σq|
|Σp|

−
1
2

Ep [(x − μp)TΣ−1
p (x − μp)] +

1
2

Ep [(x − μq)TΣ−1
q (x − μ

(x − μp)TΣ−1
p (x − μp) ∈ R

tr{(x − μp)TΣ−1
p (x − μp)} tr{}
Matrix Cookbook tr{(x − μp)(x − μp)TΣ−1

p }

=
1
2

Ep [tr{(x − μp)(x − μp)TΣ−1
p }]



We know . Simplifying it to

We can simplify the third term

Combining all this we get,

=
1
2
tr{Ep [(x − μp)(x − μp)TΣ−1

p ]}

=
1
2
tr{Ep [(x − μp)(x − μp)T ]Σ−1

p }

Ep [(x − μp)(x − μp)T ] = Σp

=
1
2
tr{ΣpΣ−1

p }

=
1
2
tr {Ik}

=
k

2

Ep [(x − μq)TΣ−1
q (x − μq)] = Ep [(x − μp + μp − μq)TΣ−

q

= Ep [(μp − μq)TΣ−1
q (μp − μq) + tr{Σ−1

q Σp} + 2(μ

= (μp − μq)TΣ−1
q (μ
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Kullback–Leibler divergence between two multivariate Gaussian

distributions

Compact form

When  is 

DKL(p||q) =
1
2
[log

|Σq|
|Σp|

− k + (μp − μq)TΣ−1
q (μp − μq) + tr{Σ−1

q Σp}]

q N (0, I)

DKL(p||q) =
1
2
[μT

p μp + tr {Σp} − k − log |Σp|]
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