
Visualisation and Dimension Reduction

Christophe Ambroise

UEVE, UMR CNRS 8071

February 20, 2025

christophe.ambroise@univ-evry.fr

1

Evaluation
A Natural Language Processing (NLP) project to be completed in pairs:

Code (in a Python notebook or R Markdown)

Presentation (scheduled for April 4, 2025)

2

Factor Analyser

3

Factor Analysis

Using discrete latent variables provides limited summary (clustering)

An alternative is to use a vector of real-valued latent variables, .

“Factor analysis (FA) is a statistical method used to describe variability among observed,
correlated variables in terms of a potentially lower number of unobserved variables called
factors.” Wikipedia quote.

PCA and FA are related, but not identical.

z ∈ RL

4

The model of factor analysis

We consider the observation

where

the noise

the hidden (latent) vector

the mean is a linear function of the (hidden) inputs

 is a matrix, known as the factor loading matrix,

 is a covariance matrix that we take to be diagonal

The special case in which is called probabilistic principal components analysis or PPCA.

x ∈ RD

x = Wz + μ + ϵ

ϵ ∼ ND(0, Ψ)
z ∼ NL(0, IL)

p(x|z, θ) = N (Wz + μ, Ψ)

W D × L

Ψ D × D

Ψ = σ2I
5

Reminder: Joint and conditional Gaussian distribution (see Murphy

chapter 4)

Let us recall that if

 and and

then

and

where

z ∼ N (μz, Σzz) x ∼ N (μx, Σxx) cov(z, x) = Σzx

p(z, x) = N([]| [], [])
z

x

μz

μx

Σzz Σzx

Σxz Σzz

p(z, x) = p(z|x)p(x) = N (z|μz|x, Σz|x)N (x|μx, Σxx)

μz|x = μz + ΣzxΣ−1
xx (x − μx)

Σz|x = Σzz − ΣzxΣ−1
xxΣxz

6

Marginal and posterior distribution

Marginal distribution

Posterior distribution

where

Exercice

Demonstrate the above formulas

x ∼ ND(μ, Σxx = WW T + Ψ)

z|x ∼ NL(μz|x, Σz|x)

Σz|x = (IL + W T Ψ−1W)−1 = S

μz|x = Σz|xΣ−1
xx (x − μ) = SW T Ψ−1(x − μ)

7

Estimation

The mean

can be estimated by maximum likelihood

 and

are estimated using an EM algorithm

μ

μmle = x̄

W Ψ

8

EM algorithm

Data

Observed data

Missing (or hidden) data :

Principle

Starting from

At step

→ E(xpectation) step:

→ M(aximisation) step:

: x1:n

: z1:n

θ0

q

Q(θ, θq) = EZ1:n|x1:n [logP(x1:n, z1:n, θ)]

θq+1 = argmaxθQ(θ, θq)

9

EM for factor analysis

Let us assume that (centering of the), the complete log-likelihood is

where

Exercice

Demonstrate the above formula

μ = 0 xi

log p(X, Z|μ, W , Ψ) = ∑

i

log NL(zi; 0, I) + log ND(xi; Wzi, Ψ)

= −
n

2
log |IL| −

n

2
Tr(Σ̂zz)

−
n

2
log |Ψ| −

n

2
Tr(Σ̂xxΨ−1) + Cst

Σ̂xx =
1
n
∑

i

(xi − Wzi)(xi − Wzi)T

10

E step

The expectation of the complete log-likelihood requires

1. where

2.

Ez|x[zi] = SW T Ψ−1(xi − μ) S = (IL + W T Ψ−1W)−1

Ez|x[ziz
T
i] = Ez|x[zi]Ez|x[zT

i] + S

11

M step

Reminders

Thus if is a vector

∂(bTa)
∂a

= b

∂(aTAa)
∂a

= (A + AT)a

∂
∂A

tr(BA) = BT

∂
∂A

log |A| = (A−1)T

tr(ABC) = tr(CAB) = tra(BCA)

x

xTAx = tr(xTAx) = tr(AxxT)
12

M step for

where

Ψ

Ez|x [
∂L(W , Ψ)

∂Ψ−1
] = Ez|x [

n

2
(Ψ − Σ̂xx)] =

n

2
(Ψ − Ez|x [Σ̂xx]) = 0

Ez|x [Σ̂xx] =
1
n

(∑
i

xix
T
i + W(∑

i

Ez|x [ziz
T
i])W

T − 2W∑

i

Ez|x [zi]xT
i)

=
1
n

(∑
i

xix
T
i + W(∑

i

Ez|x [zix
T
i]) − 2W∑

i

Ez|x [zi]xT
i)

=
1
n

(∑
i

xix
T
i − W∑

i

Ez|x [zi]xT
i)

13

M step for W

Ez|x [
∂L(W , Ψ)

∂W
] = Ez|x [−Ψ−1

∑

i

xiz
T
i + Ψ−1W∑

i

ziz
T
i] = 0

14

M Step summary

Loading matrix

Noise covariance matrix

Log-likelihood

The log-likelihood can be computed using the EM decomposition

W q+1 = (∑

i

(xi − x̄)Ez|x[zi]T)(∑

i

Ez|x[ziz
T
i])

−1

Ψq+1 =
1
N

diag{∑

i

xix
T
i − W q+1Ez|x[zi]xT

i }

logP(X; Θ) = EZ1:n|x1:n [logP(x1:n, z1:n; θ)] − EZ1:n|x1:n [logP(z1:n|x1:n; θ)]

15

Implementation of the algorithm

Initialisation via a PCA

E step

M Step

initialisation.FA<-function(X,L=1){1
 # Return W and Psi2
 d<-ncol(X)3
 Sigmaxx<-var(X)4
 W<-eigen(Sigmaxx)$vectors[,1:L]5
 if (L==1) W<-cbind(W)6
 Psi<-rep(1,d)7
 return(list(W=W,Psi=Psi))8
}9

FA.E.step<-function(X,W,Psi){1
 # X is assumed to be centered2
 # M contain the contionnal expectation of the latent factor3
 # S contains the covariance of the latent factor4
 L<-ncol(W)5
 S <- solve(diag(L) + t(W)%*%diag(1/Psi)%*%W)6
 M<- X%*%diag(1/Psi)%*%W%*%S7
 return(list(S=S,M=M))8
}9

Computation of the criterion

Putting it all together

FA.M.step<-function(X,S,M,W,Psi){1
 n<-nrow(X)2
 Psi<-1/n*diag(t(X)%*%X -W%*%t(M)%*%X)3
 W<- (t(X)%*%M)%*%solve(n*S+t(M)%*%M)4
 return(list(Psi=Psi,W=W))5
}6

log.likelihood.FA<-function(X,S,M,Psi,W){1
 n<-nrow(X)2
 Sigmax<-(t(X)%*%X-W%*%t(M)%*%X)3
 return(-(sum(diag(S+t(M)%*%M/n))4
 +log(det(diag(Psi)))+5
 log(det(S))+6
 1/n*sum(diag(Sigmax%*%diag(1/Psi)))))7
}8

FA.EM<-function(X,L=1,max.iter=50){1
 X<-scale(X,scale=FALSE);mu<-attr(X,"scaled:center")2
 log.likelihood<-NULL; init<-initialisation.FA(X,L)3
 W<-init$W; Psi<-init$Psi; criterion<- Inf; iteration<-1; 4
 log.likelihood[iteration]<--Inf5
 while ((criterion>1e-6)&&(iteration<=max.iter)){6
 E.step<-FA.E.step(X,W,Psi); E.step$S->S; E.step$M->M7
 M.step<-FA.M.step(X,S,M,W,Psi); M.step$Psi->Psi; M.step$W->W8
 iteration<-iteration+19
 log.likelihood[iteration]<-log.likelihood.FA(X,S,M,Psi,W)10
 criterion<-abs((log.likelihood[iteration] - log.likelihood[iteration-1])/max(log.likelihood[iteration], log.likelihood[iter11
 }12
 return(list(W=data.frame(W), Psi=Psi,13
 M=data.frame(M), S=S,mu=mu,14

16

 log.likelihood= log.likelihood[-1]))15
}16

Example with the Iris

17

Unidentifiability

If we consider an orthogonal rotation matrix such that

It appears that produces the same log-likelihood.

 cannot be uniquely identified.

R

RRT = I

~
W = WR

W

18

Possible rotations

1. Forcing to be orthogonal with colmuns ordered by deacresing variance

2. Forcing to be lower triangular (problem of founder variables)

3. Choosing an informative rotation matrix. For example the varimax rotation.

4. …

Varimax

Varimax rotation maximizes the sum of the variance of the squared correlations between variables
and factors

This results in high factor loadings for a small number of variables and low factor loadings for the
rest.

W

W

RVARIMAX = arg max
R

1
p

k

∑

j=1

p

∑

i=1

(WR)4
ij −

k

∑

j=1

(

1
p

p

∑

i=1

(WR)2
ij)

2
⎛

⎝

⎞

⎠

19

Varimax

W.FA<-FA.result$W1
W.Varimax<-varimax(as.matrix(FA.result$W))$loadings2
print(W.Varimax)3

Loadings:
 Latent Factor 1 Latent Factor 2
Sepal.Length 0.756
Sepal.Width -0.429
Petal.Length 1.683 0.509
Petal.Width 0.711 0.174

 Latent Factor 1 Latent Factor 2
SS loadings 3.916 0.473
Proportion Var 0.979 0.118
Cumulative Var 0.979 1.097

20

Mixture of factor analysers

Factor analyses is a way to estimate a variance matrix with few parameters

This property can be used in the context of Gaussian mixture model assuming the following
parameterization for component densities:

where is the component number and is a loading matrix defining the relation between the
observation and the latent vector

This approach is simular to the Banfield-Raftery idea of decomposing the component variance
matrix in volume, form et direction.

Mixture of 1d PPCAs with 1 and 10 components (from Murphy Chapter 12)

p(xi|zi, qi = k) = N (xi|μk + Wkzi, Ψ)

k Wk

xi zi

k

21

Relation to principal component analysis

Assumption

If

 is orthogonal

and

Then

Tipping, M. and C. Bishop (1999, Probabilistic principal component analysis. J. of Royal Stat. Soc.
Series B 21(3), 611–622) showed that FA is equivalent to PCA

Criterion

Ψ = σ2I

W

σ2 → 0

where

J(W , Z) = ∥X − ZW T∥2
F

W TW = I

22

A Constrained EM Algorithm for PCA (from Ahn, J.-H. and J.-H. Oh,

2003)

upper<-function(A){A[lower.tri(A,diag=FALSE)]<-0;return(A)}1
lower<-function(A){A[upper.tri(A,diag=FALSE)]<-0;return(A)}2
PCA.EM<-function(X,q=2){3
 p<-ncol(X); n<-nrow(X)4
 W<-diag(p)[,1:q]; M<-X%*%W # Initialisation5
 Jold<-0; J<-1; iteration<-0; Error<-NULL6
 while ((abs(J - Jold)>1e-3)){7
 Jold<-sum((X-M%*%t(W))^2)8
 S <- solve(upper(t(W)%*%W)); M<- X%*%W%*%S # E-step9
 W<- (t(X)%*%M)%*%solve(lower(n*S+t(M)%*%M))# M-step10
 W<-apply(W,2,function(x){x/sqrt(sum(x^2))})#orthogonalisation11
 J<-sum((X-M%*%t(W))^2); Error[iteration<-iteration+1]<-J12
 } 13
 return(list(W=data.frame(W),M=data.frame(M),Error=Error))}14

23

Independent Component Analysis

24

Independent Component analysis (Wikipedia)

Independent component analysis attempts to decompose a multivariate signal into independent
non-Gaussian signals.

Cocktail party problem

Underlying speech signals are separated from a sample data consisting of people talking
simultaneously in a room.

That the ICA separation of mixed signals gives very good results is based on two assumptions

Two assumptions:

The source signals are independent of each other.

The values in each source signal have non-Gaussian distributions.

25

ICA Historical context (French Wikipedia)

Blind source separation

The first formulation was carried out in 1984 by Jeanny Hérault and Bernard Ans, two researchers in
neuroscience and signal processing, to model in the form of a neuromimetic network self-adaptive
encoding and decoding of movement in humans.

France and Finland

The French signal processing community adopted a statistical formalism

While Finnish researchers aimed to extend principal component analysis by means of a
connectionist formalism (1985)

Formalisation

26

ICA Model

Let be the observed signal at the sensors at ‘’time’’ , and be the vector of source
signals:

 is an matrix,

.

The model is identical to factor analysis (or PCA if there is no noise, except we don’t in general
require orthogonality of W).

However, we will use a different prior for .

In FA, we assume each source is independent, and has a Gaussian distribution.

Relax this Gaussian assumption on latent variables (sources)

xt ∈ RD t zt ∈ RL

xt = Wzt + ϵt

W D × L

ϵt ∼ N (0, Ψ)

p(zt)

∏

Additionnal assumptions

Without loss of generality the variance of the source distributions is contrained to unity

W is assumed square and hence invertible.

p(zt) = ∏

j

pj(ztj).

27

Maximum likelihood estimation of ICA

If the data is centered and whitened, we have

also have

Hence we see that must be orthogonal. This reduces the number of parameters we have to
estimate from to .

Recognition weights/Generative weights

Let these are often called the recognition weights, as opposed to , which are the
generative weights

Log-likelihood

Since , we have

E[xxt] = I = WE[zzT]W T = WW T

W

D2 D(D − 1)/2

V = W −1 W

x = Wz

px(Wzt) = pz(zt)|det(W −1)| = pz(V xt)|det(V)|

Hence assuming T iid samples:

since is orthogonal.

L(V) =
1
T

log p(D|V) = log |det(V)|

0

+
1
T
∑

jt

log pj(vTj xt)


V

28

Estimation via Gradient Ascent

Let us define ,

where the datapoint .

Repeat for each datapoint :

hj = vT
j x

gj(hj) =
∂ log pj(hj)

∂hj

,

∂L(V)
∂Vij

= Wji + xigj(hj).

xT = (xi)i=1⋯D

x

1. Put through a linear mapping:

.

2. Put through a nonlinear map:

, where a popular choice is .

3. Adjust the weights in accordance with

matrix inversion results in a slow algorithm

x

h = V x

h

gj = gj(hj)

g() = −tanh()

∇V ∝ [V T]−1 + xgT .

29

Fast ICA (for one latent factor)

Let consider , .

, the theoritical objective function (to be minimized)

, the gradient

, the hessian matrix

Let us make the approximation

This makes the Hessian very easy to invert, giving rise to the following Newton update:

Which can be expressed as

v

G(z) = − log p(z) g(z) = G′(z)

L(v) = E[G(vTx)] + λ(1 − vTv)

∇L(v) = E[xg(vTx)] − 2λv

H(v) = E[xxTg′(vTx)] − 2λI

E[xxTg′(vTx)] = E[xxT]

I

E[g′(vTx)] = E[g′(vTx)]


v∗ ≜ v − H(v)−1∇L(v) = v −
E[xg(vTx)] − 2λv

E[g′(vTx)] − 2λ

(In practice, the expectations can be replaced by Monte Carlo estimates from the training set, which
gives an efficient online learning algorithm.)

After performing this update, one should project back onto the constraint surface using

v := E[xg(vTx)] − E[g′(vTx)]v

v :=
v

∥v∥

30

Fast ICA for

Centering and Withining is assumed

For the process is iterated for all with orthogonalisation

Fast ICA for

Intitilisation of

for j in 1 to L:

→ while changes

→ Newton update :

→ Gram-Schmidt orthogonalisation :

→ Normalisation:

Output :

L > 1

L > 1 vj

L > 1

V

vj

vj := E[xg(vT
j x)] − E[g′(vT

j x)]vj

vj := vj − ∑

j−1
k=1(vT

j vk)vk

vj := vj

∥vj∥

Z = XV

31

Non-Gaussianity

For non-Gaussianity, FastICA relies on a nonquadratic nonlinear function , its first derivative
, and its second derivative .

Classical cost

 which gives

 which gives

 which gives

f(u)
g(u) g′(u)

G(u) = log cosh(u) g(u) = tanh(u)
G(u) = − exp(−u2/2) g(u) = u exp(−u2/2)

G(u) = u4/4) g(u) = u3

32

Neural networks and unsupervised

learning

33

Modeling of a neuron

The first modeling of the neuron was suggested in the 1940s by Mac Culloch and Pitts. It was a unit
which according to several signals transmitted a binary response.

In general, a formal neuron has

dendrites which receive the input signal and

an axon which transmits the output signal

The input signal

 is a vector belonging most often to or .

Dendrites

are characterized by a weight vector

The output

x Rd {0, 1}d

w

is a function of and , which is the composition of an input function, and an output (or
activation) function,

x w h(x, w)
f(h)

34

The neuron as a funtion

Most of the time the input function is a simple dot product:

The activation functions are diverse but belong to large families (radial bases, sigmoid functions …).

A typical activation function is for example:

The functions which have this appearance are said to be sigmoid

h(x, w) = xTw

f(x, w) = η ⋅
exp {(x, w} − 1
exp (x, w) + 1

.

35

Neural networks

Neurons can be connected to each other and then form a network.

Learning consists of adjusting the free network parameters according to the desired goal, that is,
to calculate the values of the weight vectors as a function of the inputs.

Two layers networks

with one input layer transmitting the input vector to the second layer neurons

with one output layer compressing the information of the first layer with linear activation
function

allows to rewrite k-means and PCA with online learning (gradient descent)

36

Hebbian Learning (Hebb 1949)

Principle

An increase of synaptic strength between an input and an output neuron may be related to the firing
rates of the input and output [Hebb, 1949].

Practical implementation

As a result, synaptic strengths will increase fastest between pairs of neurons whose responses are
correlated, and the resulting increase in synaptic strength will lead to a further increase in the
correlation.

or in scalar form with implicit n-dependence,

Increasing the correlation in this manner may lead to a useful pattern of synaptic strengths over a
population of neurons.

Δw = η y(x)x,

wi(n + 1) = wi(n) + η y(x)xi

37

Stochastic Gradient Descent (from Wikipedia)

Statistical estimation and machine learning consider the problem of minimizing an objective
function that has the form of a sum:

where the parameter that minimizes is to be estimated.

Each summand function is typically associated with the observation in the data set (used
for training).

Sum-minimization problems arise:

in least squares and in maximum-likelihood estimation,

empirical risk minimization.

When used to minimize the above function, a standard (or “batch”) gradient descent method would
perform the following iterations:

Q(w) =
1
n

n

∑

i=1

Qi(w),

w Q(w)

Qi i − th

where is a step size (sometimes called the learning rate in machine learning).

w := w − η∇Q(w) = w −
η

n

n

∑

i=1

∇Qi(w),

η

38

Iterative method

Fluctuations in the total objective function as gradient steps with respect to mini-batches are taken.

In stochastic (or “on-line”) gradient descent, the true gradient is approximated by a gradient at a
single example:

As the algorithm sweeps through the training set, it performs the above update for each training
example.

Several passes can be made over the training set until the algorithm converges.

If this is done, the data can be shuffled for each pass to prevent cycles.

Typical implementations may use an adaptive learning rate so that the algorithm converges.

w := w − η∇Qi(w).

39

Stochastic Gradient in pseudocode

1. Choose an initial vector of parameters and learning rate

2. Repeat until an approximate minimum is obtained:

a. Randomly shuffle examples in the training set.

b. For do:

w η

i = 1, 2, ⋯ ,n w := w − η∇Qi(w).

40

Adaptative learning rate

A distinction exists between constant gain algorithms,

and decreasing gain algorithms,

The first are dedicated to the estimation of parameters changing slowly over time and the second to
the estimation of stable parameters.

ηn ≥ 0, limn→∞ηn = η > 0

∞

∑

n=0

ηn = ∞,
∞

∑

n=0

η2
n < ∞.

41

K-means and Winner take all

is a computational principle applied in computational models of neural networks by which neurons
in a layer compete with each other for activation.

The simplest form of competitive learning modifies only the weight vector of “the best” neuron at
every stage of learning.

In fact, with each presentation of a input (a vector of the training set), two steps are performed:

1. choose the best neuron, i.e. the one that shows the most important output

2. modify the weight vector of this neuron.

When the activation function is increasing (which is not true for the functions with radial basis), the
winning neuron is the one that produces the greatest value of function entry.

If we consider a dot product as an input function, the weight vector of the winner, , checks:i∗

∀i, (wi∗ ⋅ x) ≥ (wi ⋅ x).

And if the weight vectors are normalized, the winner is the neuron that has the weight vector, closest
to the input , in the sense of the Euclidean distance.

The coordinates of the winner’s weight vector are updated using a rule of the type following :

where is the training step at iteration .

x

wi∗(t + 1) = wi∗(t) + η(t) ⋅ (x − wi∗(t)), η(t) ≤ 1

η(t) t

42

Stochastic Gradient for Kmeans (online Kmeans)

The criterion to be optimized can be written as

1. Choose an initial vector of parameters and learning rate

2. Repeat until an approximate minimum is obtained:

a. Randomly shuffle examples in the training set.

b. For do:

1. For

Q(w1, ⋯ , wK) =
1

2n
∑

i
∑

k

I(k=argminℓ∥xi−wℓ∥2)∥xi − wk∥2

w η

i = 1, 2, ⋯ ,n
k = 1, 2, ⋯ ,K

∇Qi(wk) = − 1
n I(k=argminℓ∥xi−wℓ∥2)(xi − wk)

wk := wk − η∇Qi(wk).

43

Kmeans implementation

kmeans.winner.take.all<-function(X,K=2,max.iteration=2000){1
 p<-ncol(X); n<-nrow(X);shuffling<-sample(1:n,n)2
 X<-X[shuffling,]; W<-X[sample(1:n,K),]3
 Q<-rep(0,max.iteration); cluster<-rep(0,n)4
 distances<-rep(sum(diag(var(X)))*(n-1)/n,n)5
 for (i in 1:max.iteration){6
 x<-cbind(X[(i-1)%%n + 1,])7
 distances.x.to.W<-sum(x^2)-2*as.matrix(x)%*%t(W)+ colSums(t(W^2))8
 winner.index<-which.min(distances.x.to.W)9
 W[winner.index,]<-W[winner.index,] + 1/i*(x-W[winner.index,])10
 cluster[(i-1)%%n + 1]<-winner.index11
 distances[(i-1)%%n + 1]<-distances.x.to.W[winner.index]12
 Q[i]<-mean(distances) }13
 return(list(W=W,Q=Q,cluster=cluster[order(shuffling)]))14
}15

44

One line kmeans example with Fisher iris

data(iris)1
X<-iris[,1:4]2
set.seed(1)3
kmeans.winner.take.all(X,3)->res4
table(res$cluster,iris$Species)5

 setosa versicolor virginica
 1 50 0 0
 2 0 45 11
 3 0 5 39

45

One line kmeans example with Fisher iris

46

PCA and Oja’s rule

Consider a linear neuron with output that returns a linear combination of its inputs
using presynaptic weights .

PCA according OJA

Oja’s rule defines the change in presynaptic weights given the output response of a neuron to its
inputs to be

z = wTx x
w

w y
x

w := w − ηz(x − zw)

47

Stochastic Gradient PCA and Oja’s rule

The criterion to be optimized can be written as

where .

1. Choose an initial vector of parameters and learning rate

2. Repeat until an approximate minimum is obtained:

a. Randomly shuffle examples in the training set.

b. For do:

Q(w) =
1

2n
∑

i

∥xi − x̂i∥
2 =

1
2n

∑

i

∥xi − yiw∥2 =
1

2n
∑

i

∥xi − wTxiw∥2

∥w∥2 = 1

w η

i = 1, 2, ⋯ ,n
∇Qi(w) = yi(xi − yiw)
w := w − η∇Qi(w).

48

Oja’s rule implementation

Oja.rule<-function(X,max.iteration=10000,eta=0.001){1
 p<-ncol(X); n<-nrow(X)2
 w<-rbind(rep(1,p)); w<-w/(sqrt(sum(w^2)))3
 Q<-rep(0,max.iteration)4
 for (i in 1:max.iteration){5
 Q[i]<- 1/(2*n) *sum((X - X%*%t(w)%*%w)^2)6
 x<-X[(i-1)%%n + 1,]7
 y<-sum(w*x)8
 w<-w + eta*y*(x-w*y)}9
 return(list(w=w,Q=Q))10
}11

49

Oja’s rule example with Fisher iris

50

Variational auto-encoder

51

Variational autoencoder ideas

The original papers

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014, June). Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine
learning (pp. 1278-1286). PMLR.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Main reference

Diederik P. Kingma and Max Welling (2019), “An Introduction to Variational Autoencoders”,
Foundations and Trends R in Machine Learning:

What is does

generate realistic samples of data,

allow for accurate imputations of missing data,

high-dimensional data visualisation

Clustering

How it works

Latent variables models which marry ideas from

approximate Bayesian inference

→ ELBO (Evidence Lower BOund)

→ Reparametrization

deep neural networks

→ Stochastic Gradient Descent

→ Retropropagation of the Gradient

to represent an approximate posterior distribution through variational lower bound optimization

52

Auto-encoder Structure

Auto-encoder Structure

53

What is a VAE ?

Coupling of 2 parametric models

VAE is a latent variable vector and an observation

encoder (recognition model): , which is approximated by

decoder (generative model):

encoder and decoder could be neural networks

Optimization of ELBO via Stochastic Gradient Ascent

The VAE ELBO approximates the likelihood of a latent variable model

The Gradient computation uses the re-parametrization trick

Each step of the gradient ascent augment the ELBO as an EM iteration

z x ∈ RD

p(x) = ∫ p(x, z)dz

g p(z|x) qΦ(z|x)

h ≈ g−1 pΘ(x|z)

54

Example of use

Data

Left batch of original training set - right : random generation of images

55

Example of use

Learning from data

Frey image learning

56

Example of use

New Data generation from latent simulation

Frey image generation

57

Example of use

Data representation in latent space

Frey image representation

58

Example of use

Missing data imputation after learning

Frey image pixel imputation

59

Ingredient: Parameterization of conditional distributions with Neural

Networks

60

Modeling joint distribution

: Observed random variables

 : underlying unknown distribution

: model distribution

Goal:

We wish flexible

x

p∗(x)
pθ(x)

pθ(x) ≈ p∗(x)

pθ(x)

61

Modeling Conditional distribution

Classification and regression

pθ(y|x) ≈ p∗(y|x)

62

Parameterization of conditional distributions with Neural Networks

Classification

θ = NeuralNet(x)

pθ(y|x) = Categorical(y, θ)

63

Ingredient: Stochastic Gradient

64

What differences between Oja’s rule and VAE

What is a VAE ?

Coupling of 2 parametric models

decoder (generative model): where

encoder (recognition model): where is approximated by

In Oja’s rule

There are No probabilistic models

→ and

→ ,

Encoder and decoder share the same parameters

x = hΘ(z) pΘ(x|z)
z = gΦ(x) p(z|x) qΦ(z|x)

z = g(x) = wTx

x̂ = h(z) = zw

w = Θ = Φ

65

Factor analysis generalizes Oja and is closer to a VAE

Factor analysis considers the observation

where

the noise

the hidden (latent) vector

the mean is a linear function of the (hidden) inputs

 is a matrix, known as the factor loading matrix,

 is a covariance matrix that we take to be diagonal

The special case in which is called probabilistic principal components analysis or PPCA.

x ∈ RD

x = Wz + μ + ϵ

ϵ ∼ ND(0, Ψ)
z ∼ NL(0, IL)

p(x|z, θ) = N (x; Wz + μ, Ψ)

W D × L

Ψ D × D

Ψ = σ2I
66

Ingredient : Evidence Lower BOund Minimization

67

Missing data

In a missing data framework the log-likelihood of the parameters is advantageously expressed as

Approximation

When the distribution of is intractable, an approximation is used

 is the inverse function for in a Bayes sense

logPΘ(x) = Ez|x [log
P(x, z)
P(z|x)

]

z|x qΦ(z|x)

qΦ(z|x) pΘ(x|z)

68

ELBO

where from Jensen

logPΘ(x) = EqΦ(z|x) [log
PΘ(x, z)
PΘ(z|x)

]

= EqΦ(z|x) [log
PΘ(x, z)qΦ(z|x)
PΘ(z|x)qΦ(z|x)

]

= EqΦ(z|x) [log
PΘ(x, z)
qΦ(z|x)

]

ELBO

+ EqΦ(z|x) [log
qΦ(z|x)
pΘ(z|x)

]

DKL(qΦ(z|x)|pΘ(z|x))
 

DKL(qΦ(z|x)|pΘ(z|x)) = −Eq[log p

q
] ≥ − log Eq[

p

q
] ≥ 0

69

Two for one

VAE finds parameters which approximately maximize the marginal likelihood (good
generative function)

VAE finds the approximation of the recognition model which minimizes the KL divergence

PΘ(x)

70

Alternative formulation of ELBO

ELBO can be rewritten as

For a suited choice of and , can be calculated in closed form.

Exercices

1. Show that the ELBO can be rewritten as above

2. Compute the KL divergence between two multivariate Gaussians

ELBO = EqΦ(z|x) [logPΘ(x|z)] − DKL(qΦ(z|x)|pΘ(z))

p(z) q(z|x) DKL(qΦ(z|x)|pΘ(z))

71

The ELBO is maximized by Stochastic Gradient

Let be a i.i.d sample of random vector

Gradient

The Gradient can be separated into 2 parts

1.

2.

X x

ELBO(X) = ∑

x∈X

L(Θ, Φ; x)

∇ΘL(Θ, Φ; x)
∇ΦL(Θ, Φ; x)

72

Decoder Gradient:

Given some usually verified conditions and a Monte Carlo Approximation

∇ΘL(Θ, Φ; x)

∇ΘL(Θ, Φ; x) = ∇ΘEqΦ(z|x) [log
PΘ(x, z)
qΦ(z|x)

]

= ∇ΘEqΦ(z|x) [logPΘ(x, z)]
= EqΦ(z|x) [∇Θ logPΘ(x, z)]
≈ ∇Θ logPΘ(x, z)

73

Encoder Gradient:

Encoder Gradient is more difficult to compute since in general

A reparametrization (variable change) trick allows a workaround

∇ΦL(Θ, Φ; x)

∇ΦL(Θ, Φ; x) = ∇ΦEqΦ(z|x) [log
PΘ(x, z)
qΦ(z|x)

]

= ∇ΦEqΦ(z|x) [logPΘ(x, z) − log qΦ(z|x)]
≠ EqΦ(z|x) [∇Φ logPΘ(x, z) − ∇Φ log qΦ(z|x)]

74

Encoder function

Let us rewrite the decoder function with a random vector whose distribution is not parametrized by
:

We just have to compute after the change of variable

ϵ
Φ

z = g(x, ϵ; Φ)

∇ΦL(Θ, Φ; x) = ∇ΦEp(ϵ) [log
PΘ(x, z)
qΦ(z|x)

]

= ∇ΦEp(ϵ) [logPΘ(x, z) − log qΦ(z|x)]
= Ep(ϵ) [∇Φ logPΘ(x, z) − ∇Φ log qΦ(z|x)]
≈ ∇Φ logPΘ(x, z) − ∇Φ log qΦ(z|x)

log qΦ(z|x)

75

Reparametrization trick

76

Computing with a change of variable

where the second term is the log of the absolute value of the determinant of the Jacobian matrix:

variable change is chosen for the logdet being computationally affordable/simple

log qΦ(z|x)

log qΦ(z|x) = log p(ϵ) − log dΦ(x, ϵ)

log dΦ(x, ϵ) = log det

∣

⎛

⎜

⎝

∂z1
∂ϵ1

⋯ ∂z1
∂ϵk

⋮ ⋱ ⋮
∂zk
∂ϵ1

⋯ ∂zk
∂ϵk

⎞

⎟

⎠

∣
g()

77

Factorized Gaussian Posterior

Model

Reparametrization

(μ, log σ) = EncoderNNΦ(x)

qΦ(z|x) = N (z; μ, diag(σ2))

qΦ(z|x) = ∏

i

qΦ(zi|x) = ∏

i

N (zi|EncoderNNΦ(x)) = ∏

i

N (zi|μi,σ2
i)

ϵ ∼ N (0, I)

z = μ + σ ⊙ ϵ

78

Factorized Gaussian Posterior

The Jacobian of the transformation is

The log posterior density is

log dΦ(x, ϵ) = log det = log∏
i

σi

∣

⎛

⎜

⎝

∂z1
∂ϵ1

⋯ ∂z1
∂ϵk

⋮ ⋱ ⋮
∂zk
∂ϵ1

⋯ ∂zk
∂ϵk

⎞

⎟

⎠

∣
log qΦ(z|x) = log p(ϵ) − log |det(

∂z

∂ϵ
)|

= ∑

i

log N (ϵi; 0, 1) − logσi

79

Reparametrization trick

80

Full Gaussian posterior

Model

Reparametrization

Where is a lower triangular matrix obtained from a Cholesky decompostion of

qΦ(z|x) = N (z; μ, Σ)

ϵ ∼ N (0, I)

z = μ + Lϵ

L Σ = LLT

81

Full Gaussian posterior

The Jacobian has a simple form

As the determinant of a triangular matrix is the product of its diagonal terms,

∂z

∂ϵ
= L

log qΦ(z|x) = log p(ϵ) − log |det(
∂z

∂ϵ
)|

= ∑

i

log N (ϵi; 0, 1) − logLii

82

Algorithm input and output

Input:

: Dataset

 decoding function, with dist.

 encoding function with dist.

Output:

X

h(z) pΘ(x, z)
g(x) qΨ(z|x)

Θ
Φ

83

Algorithm

Initialisation of and

While SGD not converged do

Θ Φ

Draw a random minibatch

 (Random noise for every datapoint in)

Compute

→ and

→ its gradients

→

→

XM ∈ X

ϵ ∼ p(ϵ) XM

~
LΘ,Φ(XM , ϵ) = 1

m ∑x∈XM log pΘ(x, z) − log qΦ(z|x)

log p(ϵ)−log dΦ(x,ϵ)

⎛

⎜

⎝



⎞

⎟

⎠

∇Θ
~
LΘ,Φ(XM , ϵ) = 1

m
∑x∈XM

∂ log pΘ(x,z)
∂Θ

∇Φ
~
LΘ,Ψ(XM , ϵ) = 1

m
∑x∈XM

log ∂dΦ(x,ϵ)
∂Φ

() := ()+ η()

Θ
Φ

Θ
Φ

∇Θ
~
LΘ,Φ(XM , ϵ)

∇Φ
~
LΘ,Φ(XM , ϵ)

84

Original example from Kingma: Gaussian model with MLP

parametrization

Multivariate Gaussian decoder with a diagonal covariance structure

Decoder or decoder (just swap and) are assumed to have multivariate Gaussian dist.
with a diagonal covariance structure:

Decoder

 where

where are the weights and biases of the MLP and part of when used
as decoder.

pΘ(x|z) x z

logp(x|z) = log N (x; μ,σ2I) μ = W4h + b4

logσ2 = W5h + b5

h = tanh(W3z + b3)

{W3,W4,W5, b3, b4, b5} Θ

Encoder

Let us consider the prior

swap and in the decoder above to get

pΘ(z) = N (0, I)
x z qΦ(z|x)

85

Gaussian VAE illustrated

86

Mixture of Experts

87

Historical Context

Introduced in the early 1990s by Jacobs et al. (1991).

Ideas and Intuitions

Inspired by cognitive science, mimicking expert decision-making by assigning specialized sub-
models to different tasks.

Enhances generalization by combining multiple specialized models rather than relying on a
single monolithic structure.

Divide-and-conquer approach enables decomposition of complex tasks into manageable
subtasks, improving prediction accuracy (Masoudnia & Ebrahimpour, 2014; Yuksel et al., 2012).

Widely applied in machine learning, including speech recognition, image processing, LLM
(Deepseek, Mixtral, ChatGPT…)

88

MoE Components

89

Model Formulation

: Output of the gating network

Probabilistic formulation

the gating network comes from a latent variable :

where

 is a sigmoid function for or softmax for .

The expert models a pdf corresponding the nature of

f(yi; xi, Θ) =
K

∑

k=1

gk(xi; αk)fk(yi; xi, βk)

gk(xi)

f(yi; xi, Θ) = p(yi|xi, Θ)
z

gk(xi) = p(zi = k ∣ xi)

zi = k ∣ xi ∼ M (1; g(xi) = (g1(xi), … , gK(xi)))

g K = 2 K > 2
fk(yi; xi, βk) yi 90

MoE Architectures

Different types of expert models (Gormley & Eisner, 2019).

Variants include mixture models (unsupervised), prediction models (supervised).

Advantages & Challenges

MoEs enable large-scale models while reducing computational costs.

Challenges: high parameter count, complex gating network training.

91

Example of regression mixture

Training Process

Labeled Data:

→ The MoE is trained on a dataset where each input is associated with a known output.

Expert Specialization:

→ Each expert learns to master a specific subset of the data, allowing for finer modeling of
variations present in the data.

Gating Network Training:

→ The gating network learns to associate inputs with the appropriate experts based on data
characteristics.

Inference Phase

Input Routing:

→ For new data, the gating network evaluates its characteristics and selects the most
suitable expert to make the prediction.

Output Combination:

→ In some cases, outputs from multiple experts may be combined to obtain a more robust
final prediction.

92

Example of regression mixture

 ##
Example of regression mixture

93

Singular Value Decomposition

94

Singular Value Decomposition

Eigendecomposition of symmetric matrices

, there exist an orthonormal matrix and a diagonal matrix

Singular Value Decomposition

Extend the decomposition to rectangular matrices

∀A ∈ Rn×n Q ∈ Rn×n

Λ = diag(λ1, ⋯ ,λn)

A = QΛQT

X = USV T

95

Applications in machine learning

Dimensionality Reduction: SVD can be used for dimensionality reduction by reducing the rank of
a matrix

Latent Semantic Analysis: By decomposing a term-document matrix using SVD, LSA can
capture the latent semantic structure of the data

Principal Component Analysis (PCA): PCA is a SVD

Recommender Systems: By factorizing the matrix using SVD, we can identify latent factors or
features that capture underlying patterns and preferences.

Image Compression: SVD is used in image compression techniques such as JPEG.

Matrix Completion: SVD-based techniques are used in matrix completion problems, where
missing or incomplete data needs to be imputed.

…

96

Existence of the SVD for general matrices

For any matrix , there exist two orthogonal matrices , and a
nonnegative, ‘’diagonal’’ matrix such that

where and .

In a vector form

where .

X ∈ Rn×d U ∈ Rn×n V ∈ Rd×d

S ∈ Rn×d

Xn×d = Un×nSn×dV T
d×d

U TU = I V TV = I

Xn×d =
r

∑

j=1

Sjjujv
T
j

r = rank(X)

97

Geometrical interpretation

Given any matrix it defines a linear transformation:

The linear transformation can be decomposed into three operations:

X ∈ Rn×d

f : Rd → Rn, f(x) = Xx.

f

X

linear transformation

x = U

rotation

S

scaling

V T

rotation

x
   

98

Geometrical interpretation

99

Different versions of SVD

Full SVD:

- Economy sized (thin, compact) SVD:

Xn×d = Un×nSn×dV T
d×d

Xn×d = Un×rSr×rV
T
r×d

100

SVD n > d

101

SVD n < d

102

Existence of the SVD

Consider where with
 (where).

Let and correspondingly form the matrix

Define also

for each .

A = XTX = V ΛV T Λ = diag(λ1, ⋯ ,λd)
λ1 ≥ ⋯ ≥ λr > 0 = λr+1 = ⋯ = λd r = rank(X) ≤ d

σi = √λi

Sn×d = ()

diag(σ1, ⋯ ,σr) 0r×(d−r)

0(n−r)×r 0(n−r)×(d−r)

ui =
1
σi

Xvi ∈ Rn,

1 ≤ i ≤ r

103

Existence of the SVD

Exercice

It is easy to show that the are orthonormal vectors.

Completion if needed

Choose (through basis completion) such that

is an orthogonal matrix.

It verifies

i.e.,

u1, ⋯ , ur

ur+1, ⋯ , un ∈ Rn

U = [u1 ⋯ un] ∈ Rn×n

XV = US,

104

Existence of the SVD

Two possible cases:

 by construction.

, which is due to .

Consequently, we have obtained that

X[v1, ⋯ vrvr+1 ⋯ vd] = [u1 ⋯ urur+1un]()

diag(σ1, ⋯ ,σr) 0r×(d−r)

0(n−r)×r 0(n−r)×(d−r)

1 ≤ i ≤ r : Xvi = σiui

i > r : Xvi = 0 XTXvi = Cvi = 0vi = 0

X = USV T

105

Properties

The linear application characterized by has the following properties:

 is the number of non zero singular values

X

rank(X) = r

kernel(X) = span(vr+1, ⋯ , vn)
range(X) = span(u1, ⋯ , ur)

106

Low rank approximation of a matrix

Goal

Approximate a given matrix with a rank-k matrix, for a target rank k.

Motivations

Compression

De-noising

Matrix completion

X

X

107

A first toy example

X<-matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),4,3,byrow=TRUE)1
X.svd<-svd(X)2
cat("Original matrix:\n")3

Original matrix:

print(X)1

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

k<-21
cat("Approximation of rank 2:\n")2

Approximation of rank 2:

print(X.svd$u[,1:k]%*%diag(X.svd$d[1:k])%*%t(X.svd$v[,1:k]))1

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

cat("A basis of the column space:\n")1

A basis of the column space:

print(X.svd$u[,1:k])1

 [,1] [,2]
[1,] -0.1408767 -0.82471435
[2,] -0.3439463 -0.42626394

[3,] -0.5470159 -0.02781353
[4,] -0.7500855 0.37063688

cat("\nA basis of the kernel:\n")1

A basis of the kernel:

print(X.svd$u[,1:k])1

 [,1] [,2]
[1,] -0.1408767 -0.82471435
[2,] -0.3439463 -0.42626394
[3,] -0.5470159 -0.02781353
[4,] -0.7500855 0.37063688

108

Illustration of svd in image compression

See the demo of

Example borrowed from

The 512 × 512 colour image is stored as three matrices R, B, G of the same dimension 512×512
giving the intensity of red, green, and blue for each pixel. Naively storing this matrix requires 5.7Mb.

Tim Baumann

rich-d-wilkinson.github.io

library(tiff)1
library(rasterImage)2
peppers<-readTIFF("../Silo-Images/Peppers.tiff")3
plot(as.raster(peppers))4

109

Illustration of svd in image compression

Below the SVD of the three colour intensity matrices, and the view the image that results from using
reduced rank versions with rank k ∈ {5, 30, 100, 300}

svd_image <- function(im,k){1
 s <- svd(im)2
 Sigma_k <- diag(s$d[1:k])3
 U_k <- s$u[,1:k]4
 V_k <- s$v[,1:k]5
 im_k <- U_k %*% Sigma_k %*% t(V_k)6
 ## the reduced rank SVD produces some intensities <0 and >1. 7
 # Let's truncate these8
 im_k[im_k>1]=19
 im_k[im_k<0]=010
 return(im_k)11
}12

13
par(mfrow=c(2,2), mar=c(1,1,1,1))14

15
pepprssvd<- peppers16
for(k in c(4,30,100,300)){17
 svds<-list()18
 for(ii in 1:3) {19
 pepprssvd[,,ii]<-svd_image(peppers[,,ii],k)20
 }21
 plot(as.raster(pepprssvd))22
}23

110

Low rank approximation of a matrix

Frobenius norm

The Frobenius norm of a matrix is defined as

Rank k matrix

Let

X

X

∥X∥2
F = ∑

ij

X 2
ij = trace(XTX) =

r

∑

j=1

σ2
j

X̂k

X̂k =
k

∑

j=1

σjujv
T
j

111

Low rank approximation of a matrix

For any matrix with non null singular values X ∈ Rn×d σ1 ≥ σ2 ≥ ⋯ ≥ σr

X̂k = arg min
X̂:rank(X̂)=k

∥X − X̂∥2
F

min
X̂:rank(X̂)=k

∥X − X̂∥2
F =

r

∑

j=k+1

σ2
j

112

Proof

We have

We need to show that if where and have k columns then

∥X − Xk∥2
F =

n

∑

i=k+1

σiuiv
⊤
i

2

F

=
n

∑

i=k+1

σ2
i

∥ ∥

Yk = AB⊤ A B

∥X − Xk∥2
F =

n

∑

i=k+1

σ2
i ≤ ∥X − Yk∥2

F .

113

Proof

By the triangle inequality with the spectral norm, if then
 .

Suppose and respectively denote the rank k approximation to and by SVD.

Then, for any

X = X ′ + X ′′

σ1(X) ≤ σ1(X ′) + σ1(X ′′)

X ′
k X ′′

k X ′ X ′′

i, j ≥ 1

σi(X ′) + σj(X ′′) = σ1(X ′ − X ′
i−1) + σ1(X ′′ − X ′′

j−1)

≥ σ1(X − X ′
i−1 − X ′′

j−1)

≥ σ1(X − Xi+j−2) (since rank(X ′
i−1 + X ′′

j−1) ≤ rank (Xi+j−2))
= σi+j−1(X).

114

Proof

Since , when and we conclude that for

 Therefore,

σk+1(Yk) = 0 X ′ = X − Yk X ′′ = Yk i ≥ 1, j = k + 1

σi(X − Yk) + σk+1(Yk)

0

≥ σk+i(X).


∥X − Yk∥2
F =

n

∑

i=1

σi(X − Yk)2 ≥
n

∑

i=k+1

σi(X)2 = ∥X − Xk∥2
F .

115

Low rank approximation of a matrix and projection

If , then we can assume columns of
where is a set of orthonormal vectors for the linear space of columns of .
First, observe that

Optimum solution is the orthogonal projection

For each term ,the optimum solution is the projection of onto
:

where

rank(X̂) = k X̂i X̂ ∈ Ek = span{w1, w2, ⋯ , wk}
{w1, w2, ⋯ , wk} Xk

∥X − X̂∥2
F = ∑

i

∥Xi − X̂i∥2

∥Xi − v∥2
2 Xi

Ek = span{w1, w2, ⋯ , wk}

X̂i =
k

∑

j=1

⟨Xi, wj⟩wj = ΠEk
Xi.

ΠEk
= ∑

k
j=1 wjw

T
j

116

Projection on the orthogonal subspace

Consider the projection matrix on the space orthogonal to . More precisely, let us add
 such that form an orthonormal basis of . Then,

ΠE⊥
k

Ek

wk+1, ⋯ , wn w1, ⋯ , wn Rn

ΠE⊥
k

=
n

∑

j=k+1

wjw
T
j

∥X − X̂∥2
F = ∥X − ΠEk

X∥2
F = ∥(I − ΠEk

)X∥2
F = ∥ΠE⊥

k
X∥2

F

117

Relation to principal component analysis

Warning

 is considered as centered. This tranformation (cloud translation allows considerable
simplification)

Decomposition of

Considering the orthonal projection on

X

X

Ek

X = ΠEk
X + ΠE⊥

k
X

118

Criterion

In terms of intertia, PCA maximizes the projected inertia (approximation) while minimizing the
ditances to the space of projection (error):

∥X∥2
F = ∥ΠEk

X∥2
F

approximation

+ ∥ΠE⊥
k

X∥2
F

error





IT = IE + IE⊥
k

119

Best low rank approximation

where

X̂k = ΠEk
X =

k

∑

j=1

σjujv
T
j = U∙,1:kS1:k,1:kV T

∙,1:k

X = U

n×n

 S

n×d

T

V

d×d

 

120

Different views of the approximation

The approximation

can be considered in multiple ways:

approximation of the row

approximation of the columns

Notations

If is a data table,

each row is a description of an individual

each colum is variable describing individuals

∥X − X̂∥2
F

X

xT
i

Xj n

121

Rows approximation (projection of the individuals)

Transposing the matrix the best low rank approximation becomes

where

X̂T
k = ΠFk

XT =
k

∑

j=1

σjvju
T
j = V∙,1:kS1:k,1:kU T

∙,1:k

Fk = span{v1, ⋯ , vk}

122

The approximation error

Each row is approximated by

where is the matrix composed of the vectors defining .

∥X − X̂∥2
F = ∥XT − X̂T∥2

F = ∑

i

∥xi − x̂i∥2
2

xi

x̂i = ΠFk
xi = VFk

V T
Fk

xi

VFk
Fk

123

Projection of the variables

 is the projection matrix on

and

ΠEk
E = span(u1, ⋯ , uk)

ΠE = UEk
U T

Ek

ΠEk
X = U1:n,1:kU T

1:n,1:kU1:n,1:n

(Ik,0k,n−k)

S1:n,1:kV T
1:d,1:d = U1:n,1:kS1:k,1:kV T

1:d,1:k


124

k first principal components

where .

The principal component are the coordinates of the projection of the rows of on :

C1:n,1:k = UEk
S1:k,1:k

S1:k,1:k = diag(σ1, ⋯ ,σk)

X Fk

C1:n,1:k = XV1:d,1:k

125

Percentage of information

We have , thus

and

CT
∙,1:kC∙,1:k = S 2

1:k,1:k = diag(σ2
1, ⋯ ,σ2

k)

∥C∙,1:k∥2
F =

k

∑

j=1

σ2
j

∥C∙,1:k∥2
F

∥X∥2
F

=
∑

k
j=1 σ

2
j

∑

d
j=1 σ

2
j

∈ [0, 1]

126

Correlations

ĉor(X∙,j, C∙,k) =
XT

∙,jC∙,k

∥X∙,j∥∥C∙,k∥
= cos ˆ(X∙,j, C∙,k)

127

Duality

It is easy to show that

the columns of are the eigenvector of

the columns of are the eigenvector of

Thus the principal component of are the eigenvectors of and vice-versa

V XTX

U XXT

XTX XXT

128

Multi Dimensional Scaling

129

Dimensionality reduction and manifold learning

Goal

Given pairwise

dissimilarities or

high-dimensional input data

reconstruct a lower dimensional map with embedded data

Principle

Minimize an objective function quantiying the discrepancies between the and the distances

w.r.t .

δij

{xi}i=1⋯...n

{yi}i=1⋯...n

δij
d(yi, yj)

{yi}i=1⋯...n

130

A Brief history

The methodology of Multidimensional Positioning (Multidimensional Scaling, MDS) was born in the
USA in the 1950s

Works of Torgerson (1952, 1958),

Works of Shepard (1962),

initial applications to sparse data in

psychometrics,

marketing,

sensory analysis.

131

Proximity measures

Distance

The function from in is a distance if it satisfies the following properties:

Dissimilarity

The function of in is a distance if it satisfies the following properties:

d E × E R+

∀i, j ∈ E, dij = dji

∀i ∈ E, dii = 0
∀i, j and k ∈ E, dik ≤ dij + djk

δ E × E 𝕣+

∀i, j ∈ E, δij = δji

∀i ∈ E, δii = 0

132

Classical scaling

Also known as Torgerson scaling, principal coordinate analysis (PCoA), …

Principle

assume that the dissimilarities are distances and

find the main coordinates that explain the distances.

133

From distances to scalar product

How to calculate the distance matrix from ?

from where

Distance and data table (continued)}

X

d2
ij =

p

∑

a=1

(x2
ia + x2

ja − 2xiaxja)

=
p

∑

a=1

x2
ia +

p

∑

a=1

x2
ja − 2

p

∑

a=1

xiaxja

D2 = diag(XX t)I(1,n) + I(n,1)diag(XX t)t − 2XX t

Let be the centering matrix,

Centering of in columns

Centering of in rows

J

J = I −
1
n

I(n,n)

X

JX = X −
1
n

I(n,n)X

X

X tJ = X t −
1
n
X tI(n,n)X

134

Distance and data table (continued)}

Problem: we know , we want : Double centeringD2 X

−
1
2
JD2J = −

1
2
Jdiag(XX t) ∗ I(1,n)J

−
1
2
JI(n,1)diag(XX t)tJ

+ JXX tJ

= XX t

135

Low rank approximation and principal coordinates

The idea is to minimize

w.r.t

We know the minimum is a low rank apprixation of rank

the analysis of the triple consists in replacing the matrix by the matrix of the square of
dissimilarities

Remark

If is a distance matrix the solution (first k principal components of) is
optimal and PCoA is equivalent to PCA.

∥XXT − Y Y T∥2
F

rank(Y Y T) = k

B = Y Y T k

B = (UEk
S1:k,1:k)(ST

1:k,1:kU
T
Ek

) = Y Y T

D2

Δ2

Δ2 Y = UEk
S1:k,1:d XTX

136

Algorithm

1. Compute the matrix

2. Double centering of :

3. Spectral decomposition of ~:

4. Let be the representation dimension chosen for the solution.

 is the matrix of largest eigenvalues, listed in descending order on the diagonal.

 is the matrix of corresponding eigenvectors

The solution of the problem is

Δ2

Δ2

BΔ2 = −
1
2
JΔ2J

BΔ2

BΔ2 = UΛU t

k

Λ+ k

U + k

Y = U +Λ
1
2
+

137

Optimized criterion

the optimized criterion is

with of rank

Remarks: If is a dissimilarity matrix then some principal components will be negative!

L(X) = || −
1
2
J(D2(X) − Δ2)J||2

= ||XX t +
1
2
JΔ2)J||2

= ||XX t − BΔ2 ||2

BΔ2 k

Δ

138

Models and functions for the MDS

MDS matches proximities to distances between objects:

with a classical array of low dimensional data - the dissimilarities are the data of the pb - the
distances are the unknowns

the MDS finds a configuration in a space of dimension , used to calculate distances

δij dij

f : δij ⟶ dij(Y)

Y δij
dij(Y)

Y m dij

139

In practice

the dissimilarities are marred by errors and one does not look for such that

but rather

f

f(δij) = dij(Y)

f(δij) ≈ dij(Y)

140

Error function

Definition of an error function

Raw global error (raw stress)

The global error is not very informative~: A large value of does not necessarily indicate
bad result.

eij = (f(δij) − dij(Y))2

σ2
r(Y) = ∑

i>j

(f(δij) − dij(Y))2

σ2
r(Y)

141

Normalized error function

Normalized Stress

A general form

σ2
n(Y) =

∑i>j (f(δij) − dij(Y))
2

∑i>j d
2
ij(Y)

σ2(Y) = ∑

i>j

wij(f(δij) − dij(Y))
2

142

Different approaches

metric: quantitative approach

non-metric : qualitative approach

Metric approach

Algebraic transformation of (e.g.)

With

assurance of the existence of an configuration of dimension at most such that

Non-metric approach

δij f(δij) = aδij + b

f(δij) = δij + b(1 − I(i=j))

Y n − 2

f(δij) = dij(Y)

143

Sammon’s Projection

Metric Method: “Projection” into a space of low dimension (1,2, or 3)

 configuration sought

Euclidian distance

Y = (y1, … , yn)t

dij = d(yi, yj)
= ∥yi − yj∥2

144

Sammon stress function

Sammon searches for the minimizing

 identity

Remarks:

Sammon’s Stress

is invariant to rotations, translation and scaling

focuses on small distances

yi

S(Y) =
1

∑i<j δij

∑i<j(δij − dij(Y))2

δij

f

wkl = 1
(∑i<j δij)δkl

145

Minimisation of Sammon’s Stress

minimisation of a function from to

Global minimum is difficult to reach

Gradient descent

Remarks

Many possible optimmisation methods

Initial Random configuration

Rn×k R

146

Example in R

sammon from library MASS

 Sammon's Non-Linear Mapping

Description
 One form of non-metric multidimensional scaling.

Usage
 sammon(d, y = cmdscale(d, k), k = 2, niter = 100, trace = TRUE,
 magic = 0.2, tol = 1e-4)

147

Sammon gradient

Let show that

From chain rule

1.

2.

∂S(Y)
∂yik

= −2∑
j<i

wij

δij − dij

dij
(yik − yjk)

∂S(Y)
∂yik

=
∂S(Y)

∂∥yi − yj∥

1

×
∂∥yi − yj∥

∂yik
2





∂S(Y)
∂dij

== −2∑j<i wij(δij − dij)

∂∥yi−yj∥
∂yik

= ∂dij
∂d2

ij

∂d2
ij

∂yik
= yik−yjk

dij

148

Sammon gradient descent

At iteration q

y
(q+1)
ik := y

(q)
ik − η

∂S(Y)
∂yik

149

Example Ekman colors

Ekman presents similarities for 14 colors which are based on a rating by 31 subjects where each
pair of colors was rated on a 5-point scale (0 = no similarity up to 4 = identical). After averaging, the
similarities were divided by 4 such that they are within the unit interval. Similarities of colors with
wavelengths from 434 to 674 nm.

150

Example Ekman colors

151

Example Classical scaling

152

t-SNE
Variation of Stochastic Neighbor Embedding

easier to optimize,

produces significantly better visualizations by reducing the tendency

scalable: for very large data sets, t-SNE can use random walks on neighborhood graphs

153

Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) converts distances into conditional probabilities that
represent similarities

Conditional probabilities

Interpretation

Probability that would pick as its neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at :

pj|i

pj|i =
exp(−∥xi − xj∥2/(2σ2

i))

∑k≠i exp(−∥xi − xk∥2/2σ2
i)

.

xi xj

xi

154

Stochastic Neighbor Embedding

similar conditional probability between the , which we denote by .

Conditional probabilities,

with .

SNE can also be applied directly to similarity data

provided similarities can be interpreted as conditional probabilities we set

yi qj|i

qj|i

qj|i =
exp(−∥yi − yj∥2)

∑k≠i exp(−∥yi − yk∥2)
.

qi|i = 0

155

Cost function

A natural measure of the faithfulness with which models is the Kullback-Leibler divergence
(equal to the cross-entropy up to an additive constant).

the SNE cost function focuses on retaining the local structure of the data in the map (for reasonable
values of the variance of the Gaussian in the high-dimensional space).

qj|i pj|i

C = ∑

i

KL(Pi∥Qi) = ∑

i

∑

j

pj|i log
pj|i

qj|i
,

156

Selecting the variance

SNE performs a binary search for the value of that produces a with a fixed perplexity that is
specified by the user

Perplexity

where is the Shannon entropy of measured in bits

Remarks

the perplexity increases monotonically with the variance

smooth measure of the effective number of neighbors

Typical values are between 5 and 50.

σi

σi Pi

Perp(Pi) = 2H(Pi) ,

H(Pi) Pi

H(Pi) = −∑
j

pj|i log2 pj|i .

σi

157

Gradient descent

Gradient

Interpretation

The gradient may be interpreted as the resultant force created by a set of springs between the map
point and all other map points .

force exerted by the spring between and is proportional to its length

also proportional to its stiffness

Initialisation

 points randomly sampled from an isotropic Gaussian with small variance that is centered around
the origin

∂C
∂yi

= 2∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj) .

yi yj

yi yj

(pj|i − qj|i + pi|j + qi|j)

n

158

Gradient in practice

To speed up the optimization and to avoid poor local minima, a relatively large momentum term
is added to the gradient:

where indicates the solution at iteration , indicates the learning rate, and represents the
momentum at iteration .

In addition, in the early stages of the optimization, Gaussian noise is added to the map points
after each iteration. Gradually reducing the variance of this noise performs a type of simulated
annealing

Y (t) = Y (t−1) + η
∂C
∂Y

+ α(t)(Y (t−1) − Y (t−2)
) ,

Y (t) t η α(t)
t

159

t-Distributed Stochastic Neighbor Embedding

cost function of SNE is difficult to optimize

t-SNE suffers from the “crowding problem”

t-SNE vs SNE

1. Uses a symmetrized version of the SNE cost function with simpler gradients

2. Student-t distribution rather than a Gaussian to compute the similarity between two points in the
low dimensional space.

160

Symmetric SNE

where and to zero.

 and

 for all .

Joint probabilies

Joint probabilies

C = KL(P∥Q) = ∑

i

∑

j

pij log
pij

qij
,

pii qii

pij = pji

qij = qji i, j

pij

pij =
exp(−∥xi − xj∥2/2σ2)

∑k≠l exp(−∥xk − xl∥2/2σ2)

qij

qij =
exp(−∥xi − xj∥2)

∑k≠l exp(−∥xk − xl∥2)
.

161

t-SNE

Problems when a high-dimensional datapoint is an outlier, the values of are extremely small
for all , so the location of its low-dimensional map point has very little effect on the cost
function.

. ensures that ,

each makes a significant contribution to the cost function.

t-SNE Gradient

The main advantage of the symmetric version of SNE is the simpler form of its gradient, which is
faster to compute.

symmetric SNE produces maps that are just as good as asymmetric SNE

xi pij
j yi

pij =
pj|i+pi|j

2n ∑j pij > 1
2n ∀xi

xi

∂C
∂yi

= 4∑
j

(pij − qij)(yi − yj) .

162

The Crowding Problem

Modeling the small distances accurately has detrimental effect on moderate distances
representation

the crowding problem is not specific to SNE

the area of the two-dimensional map that is available to accommodate moderately distant
datapoints will not be nearly large enough compared with the area available to accommodate
nearby datapoints.

163

Mismatched tails can compensate for mismatched dimensionalities

-distribution for the

Student distribution with a single degree of freedom also known as a Cauchy distribution

Gradient

t qij

qij =
(1 + ∥yi − yj∥2)−1

∑k≠l(1 + ∥yk − yt∥2)−1

∂C
∂yi

= 4∑
j

(pij − qij)(yi − yj)(1 + ∥yi − yj∥2)−1 . (1)

164

Two optimization tricks

“Early compression”

Force the map points to stay close together at the start of the optimization.

Easy for clusters to move through one another and thus to explore the space of solutions

implemented by adding an additional L2-penalty to the cost function that is proportional

“Early exaggeration”

Multiply all of the ’s by, for example, 4, in the initial stages of the optimization.

natural clusters in the data tend to form tight widely separated clusters in the map.

creates a lot of relatively empty space in the map

makes it much easier for the clusters to move around relative to one another

pij

165

Uniform manifold approximation and projection (UMAP)

UMAP works directly with similarities and uses cross-entropy as a criterion.

Distance in high dimensional space

 is the distance between and , which UMAP does not require to be Euclidean.

 is the distance to the nearest neighbor of .

 is the normalizing factor, which is chosen by a specific Algorithm and plays a similar role to
the perplexity-based calibration of in t-SNE.

Symmetrization is carried out by fuzzy set union

vj|i = exp [(−d(xi,xj) − ρi)/σi]

d(xi,xj) xi xj)
ρi i

σi

σi

vij = vj|i + vi|j − vj|ivi|j

166

Uniform manifold approximation and projection (UMAP)

Low dimensional similarities

where and are user-defined positive values

Cost function (cross-entropy)

Optimization process is done by stochastic gradient descent

wij = (1 + a∥yi − yj∥2b
2)−1

a b

CUMAP = ∑

i≠j

vij log
vij

wij

+ (1 − vij) log
1 − vij

1 − wij

167

UMAP vs t-SNE

In terms of performance,

UMAP is often considered to produce more stable and consistent results than t-SNE,

especially when dealing with large datasets.

On the other hand,

t-SNE is often considered to produce more visually appealing results,

especially when dealing with small datasets.

168

Word Embedding

169

Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence matrix

Two common co-occurrence matrix

the word-document matrix

the word-word matrix.

170

Word-document matrix

In a Word-document matrix, each row represents a word in the vocabulary and each column
represents a document from some collection of documents.

Number of words occurence in 4 Shakespeare plays (from speech and langage processing)

171

Word-Word matrix

In the Word-context matrix the columns are labeled by words rather than documents.

each cell records the number of times the row (target) word and the column (context) word co-
occur in some context in some training corpus.

Context

a context could be the document, in which case the cell represents the number of times the two
words appear in the same document.

smaller contexts are common: generally a window around the word

word-word matrix from a Wikipedia corpus (from speech and langage processing)

172

Cosine for measuring similarity

The cosine similarity metric (or empirical correlation) between two word vectors and (lines of a
word-document or word-word matrix)

v w

cos(v, w) =
vTw

∥v∥∥w∥

173

TF-IDF: Weigthing terms in the vector

Term frequency (tf)

Raw frequency is very skewed and not very discriminative.

Usually squashed by using the : a word appearing 100 times in a document doesn’t make
that word 100 times more relevant

Inverse document frequency

The second factor in tf-idf is used to give a higher weight to words that occur only in a few
documents.

where is the total number of documents, and is the number of documents in which term
occurs.

tft,d = count(t, d)
log10

tf t,d = log10 (count(t, d) + 1)

idft = log10(
N

df t
)

N dft t
174

TF-IDF: Weigthing terms in the vector

The tf-idf weighted value for word in document thus combines term frequency with
:

 A tf-
idf weighted term-document matrix. Note that the tf-idf weighting has eliminated the importance of the
ubiquitous word good and vastly reduced the impact of the almost-ubiquitous word fool.

wt,d t d tft,d
idf

wt,d = tft,d × idft

175

Pointwise Mutual Information (PMI)

An alternative weighting function to tf-idf, PPMI (positive pointwise mutual information), is used for
term(target)-term(context)-matrices.

Target word, word we focus on.

Context words surrounding the target word

The pointwise mutual information between a target word and a context word (Church and
Hanks 1989, Church and Hanks 1990) is defined as:

w c

PMI(w, c) = log2
P(w, c)

P(w)P(c)

176

Positive PMI (called PPMI)

Negative PMI values (which imply things are co-occurring less often than we would expect by
chance) tend to be unreliable unless our corpora are enormous.

Positive PMI

replaces all negative PMI values with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and
Nitta 1994)

PPMI(w, c) = max(log2
P(w, c)

P(w)P(c)
, 0)

177

Applications of the tf-idf or PPMI vector models

Principle

Computing two documents (or word) similarity after transformation.

Given two documents and , the similarity is .

Applications

Documents : information retrieval, plagiarism detection, news recommender systems, and even
for digital humanities tasks like comparing different versions of a text to see which are similar to
each other.

Words : finding word paraphrases, tracking changes in word meaning, or automatically
discovering meanings of words in different corpora.

d1 d2 cos(d1, d2)

178

Latent Semantic Analysis (LSA)

Goal and assumptions

extracting and representing the underlying meaning of words in a corpus of texts.

words that occur in similar contexts have similar meanings.

Principle

LSA uses singular value decomposition (SVD) to identify latent, or hidden, patterns in word co-
occurrence data.

179

Latent Semantic Analysis

LSA uses SVD on the matrix of word-document matrix to identify the latent concepts (contexts,
topics, …) that underlie the relationships between words in the corpus: with classical
low rank approximation

W = USV T

UkSkV
T
k

180

Latent Semantic Analysis

The values on the main diagonal of indicate the ‘importance’ of each of the k main ‘latent
concepts’ (or factors).

For each of the document, the corresponding row of allows us to see which concepts are
present and with what weights.

For each of the concept, the associated column of indicates which terms form the concept
(and with what weights).

Calculating the similarity between a term and a document involves choosing:

the row corresponding to the document in the matrix ,

the row corresponding to the term in the matrix ,

and then computing the product .

To determine the similarity of a term to each of the documents

Sk

Uk

Vk

u Uk

v Vk

uSkvT

UkSkvT

Conversely, we can determine the similarities between a document and all the terms throughu

uSkVT
k

181

Latent Dirichlet Allocation (LDA)

History

In the context of population genetics, LDA was proposed by J. K. Pritchard, M. Stephens and P.
Donnelly in 2000.

LDA was applied in machine learning by David Blei, Andrew Ng and Michael I. Jordan in 2003.

Principle

Latent Dirichlet Allocation (LDA) is a probabilistic generative model that assumes that

each document is generated by a mixture of latent topics

each topic is generated by a mixture of words from the vocabulary.

Documents are represented as random mixtures over latent topics, where each topic is
characterized by a distribution over all the words.

182

LDA Generative process

For a corpus consisting of documents

1. Choose topic parameter vector for document : , where and
 is a Dirichlet distribution with a symmetric parameter which typically is sparse ().

2. Choose the word parameters vector of topic : , where and
typically is sparse

3. For each of the word positions , where , and

a. Choose a topic

b. Choose a word

D M

i θi ∼ Dir(α) i ∈ {1, … ,M}
Dir(α) α α

k φk ∼ Dir(β) k ∈ {1, … ,K} β

i, j i ∈ {1, … ,M} j ∈ {1, … ,Ni}

zi,j ∼ Cat(θi).
wi,j ∼ Cat(φzi,j).

183

Latent Dirichlet Allocation (LDA) in summary

φk=1…K ∼ DirichletV (β)
θd=1…M ∼ DirichletK(α)

zd=1…M,w=1…Nd
∼ CategoricalK(θd)

wd=1…M,w=1…Nd
∼ CategoricalV (φzdw)

P(W , Z, θ, φ;α,β) =
K

∏

i=1

P(φi;β)
M

∏

j=1

P(θj;α)
N

∏

t=1

P(Zj,t ∣ θj)P(Wj,t ∣ φZj,t),

184

Latent Dirichlet Allocation (LDA) estimation

Estimating the parameters could be achieved through Variationnal Bayes EM algorithm.

185

Example of LDA in Action

Corpus of Three Documents

1. “cats dogs pets love”

2. “dogs bark loud outside”

3. “politics government election law”

Step 1: Identify Topics

After running LDA, it may discover two topics (dist. over words): - Topic 1 (Pets): {cats, dogs, pets,
bark, love} - Topic 2 (Politics): {politics, government, election, law}

Step 2: Assign Topics to Documents

- Document 1 -> 90% Topic 1, 10% Topic 2
- Document 2 -> 80% Topic 1, 20% Topic 2
- Document 3 -> 95% Topic 2, 5% Topic 1

186

Pro and Cons

Advantages of LDA

Unsupervised Learning: No labeled data needed.

Interpretable Topics: Extracts meaningful topics from text.

Limitations of LDA

Fixed Number of Topics: Must specify the number of topics beforehand.

Bag-of-Words Assumption: Ignores word order and context.

Computationally Expensive: Requires approximation methods for inference.

Applications of LDA

187

Word2vec

Embeddings

more powerful word representation

short dense vectors: ranging from 50-1000, rather than the much larger vocabulary size or
number of documents

dense vectors work better in every NLP task than sparse vectors

Skip-gram with negative sampling

The skip-gram algorithm is one of two algorithms in a software package called word2vec

The other algorithm is CBOW (continuous bag of words)

d |V |
D

188

Embedding derived from classification

Data : words and their context (neighboring words ()

… lemon, a [tablespoon of apricot jam, a] pinch … c1 c2 w c3 c4

Classification task

Given a tuple of a target word paired with a candidate context word (for
example (apricot, jam), or perhaps (apricot, aardvark)) return the probability that is a real context
word (true for jam, false for aardvark):

Similarity

we rely on the intuition that two vectors are similar if they have a high dot product (after all, cosine is
just a normalized dot product). In other words:

±L

(w, c) ∈ Rd × Rd w c
c

P(ywc = 1|w, c) = 1 − P(ywc = 0|w, c)

189

From dot product to logistic regression

Logit

Criterion

The criterion is a kind of likelihood including positive examples (observed association) and negative
examples (non observed associations). In fact skip-gram with negative sampling (SGNS) uses more
negative examples than positive examples (with the ratio between them set by a parameter).

P(ywc = 1|w, c) =
1

1 + exp(−cTw)

k

L = ∑

w,c:ywc=1

logP(ywc = 1|w, c) + ∑

w′,c′:yw′c′=0

logP(yw′c′ = 0|w′, c′)

190

Example

The learning algorithm for skip-gram embeddings takes as input a corpus of text

random embedding vector initialization for each of the N vocabulary words

iteratively shift the embedding of each word to be more like the context words

Let’s start by considering a single piece of training data:

… lemon, a [tablespoon of apricot jam, a] pinch …

w

191

Skip-gram model learns two separate embeddings

192

Final embeddings

skip-gram outputs the target matrix and the context matrix .

It’s common to just add them together, representing word i with the vector .

Alternatively we can throw away the C matrix and just represent each word i by the vector .

As with the simple count-based methods like tf-idf, the context window size L affects the
performance of skip-gram embeddings, and experiments often tune the parameter L on a
devset.

W C

wi + ci

wi

193

Transformers

194

The nature of transformers

Deep learning architecture based on attention mechanisms

Weight the importance of different tokens in a sequence to model long-range dependencies
efficiently

History of AI leading to chatGPT

195

The nature of transformers

A classical transformer is a
function

 is a finite set (vocabulary) (Open AI uses 50,000 token as vocabulary)

 be a sequence of token, where each (In practice context varies from 1 to n, the
blocksize)

 is the probability of the jth token in

Remarks

T (w1:n) =
⎡

⎢

⎣

p1

⋮
p|V |

⎤

⎥

⎦

The nature of transformer

V

w1:n wi ∈ V

pj w(j) V

196

Optimized criteria

Transformers typically optimize different criteria depending on the task they are trained on.

Causal Language Modeling (CLM) / Autoregressive Loss

Used in: GPT models

Objective: Predict the next token given the previous tokens

The training set is a set of sequences of tokens :

where denotes the tokens preceding position in the sequence

The criterion is a kind of pseudo log-likelihood.

(sj) n sj = (wj
1,wj

2, … ,wj
n)

LCLM = −∑
j

n

∑

t=1

∑

c∈V

II
w

j
t=c

logP(wj
t = c|wj

1:t−1)

w
j
1:t−1 t j

If nothing is learned each token has the same probability of appearing: the largest possible value of
the criterion is

− log
1

|V |

197

Masked Language Modeling (MLM)

Used in: BERT models

Objective: Predict randomly masked tokens in a sentence.

Let be the set of masked positions in the sequence :Mj ⊂ {1, … ,n} (sj)

LMLM = −∑
j

∑

t∈Mj

∑

c∈V

II
w

j
t=c

logP(wj
t = c|wj

(1:n)∖M)

198

Conditional Language Modeling / Translation Loss

Used in: T5, BART

Objective: Predict an output sequence given an input sequence (e.g., translation,
summarization).

Given input sequence and output sequence :

Other losses

Transformers exact objective functions depends on type of considered problems

wj = (wj
1, … ,wj

n) vj = (vj1, … , vjm)

LSeq2Seq = −∑
j

m

∑

t=1

∑

c∈V

II
v
j
t=c

logP(vjm = c|vj1:m−1,wj
1:n)

199

Initial embedding

The token are first embedded in a dimensional space (see previous topic)

the representation is independent of context.

Let .

Initial embedding

d

xi = Ewi

X = x1:n = w1:nE
⊤ ∈ Rn×d

200

A minimal self-attention architecture for decoder

Attention is a communication mecanism between the tokens of a sequence.

Self attention proposes a contextual representation of as a linear combination the sequence:

 aggregates the past between query (current postion i) and key (other past position j)

→

In decoder the future cannot communicate with the past

→

the structure of the attention matrix is thus lower triangular in classical GPT decoder,

it is not necessary to have a triangular attention matrix (i.e. sentiment analysis)

 is learned matrix of parameters and can be seen a projection matrix modifying the embedding
of the linear combination of sequence tokens. Let consider V as a square matrix .

hi xi

hi = V .
n

∑

j=1

αijxj

hi

∑j αij = 1

∀j > i,αij = 0

V
d × d

201

Attention and matrix notation

, where

→ Q is a matrix that modifies the embedding of the token we are looking for. Let consider V
as a square matrix .

→ K is a matrix that modifies the embedding of the word we are comparing against. Let
consider V as a square matrix .

Matrix notation

Remark

In the original paper (“Attention is all you need”, 2017) the notation is different and notes:

αij = softmax(xT
i Q

TKxj) = exp(xT
i Q

TKxj)
∑

n
j=1 exp (xT

i Q
TKxj)

d × d

d × d

H = = Attention(Q,K,V,X) = softmax(X(QTK)XT)XV T

⎡

⎢

⎣

hT
1

⋮

hT
n

⎤

⎥

⎦

 as ,

 as , and

 as

XQT Q

XK T K

XV T V

202

Ilustration of self-Attention

Self-attention block in auto-encoder

203

Interpretation of Q, K, V

The query is modified version of an initial embedding

The Key is modified version of an initial embedding

Value is modified version of an initial embedding , which should include contextual
information since it is a transformation of a linear combination of the context tokens…

Attention Concept Sometimes Similar to

Query Target (What to focus on)

Key Context (What to compare against, the source of
information)

Value Contextual embedding

qi = Qxi

ki = Kxi

vi = V xi

204

Important details

The original paper introduces many add-ons, which much improve the transformers performances:

Positional encoding for introducing the notion of order in the sequence

FFN: Feed Forward Neural layer.

→ As the attention is a linear operation composed with a softmax, a Feed Forward Neural
layer is added for making the function more flexible

Multi-blocks: In the spirit of Deep learning blocks of attention and FNN are repeated…

Dropout layers are used for prevenring overfitting (from “Dropout a simple way to prevent NN
from overfitting” Hinton)

Simple trick of Skip connection for stabilizing the gradient (from “Deep learning residuals for
image recognition”)

→ The deep learning structure tends to cause problems with gradient computation
(vanishing or exploding gradient)

In order to make tokens comparable, they are all normalized at the output of each blocks:

→ The classical z-transformed is applied (with Bayesian correction)

Multi-head attention: computes multiple attention functions (heads) in parallel
205

Positional encoding

Attention do not consider order of tokens !

Incorporating information about the order of tokens is achieved by adding positional encodings
to the input embeddings

The original transformer implementation uses:

even indices:

odd indices:

It ensures that each position is assigned a unique encoding

PEpos,2i = sin(
pos

10000
2i
d

)

PEpos,2i+1 = cos(
pos

10000
2i
d

)

206

Feed Forward Neural Network

Attention mechanism operates linearly to capture dependencies between tokens in a sequence

Non-linearity enhance the model’s expressive power

Structure of the FFN:

Each FFN consists of two linear transformations with a non-linear activation function in between:

1. First Linear Transformation: embedding of the input from the model’s dimensionality to a
higher-dimensional space

2. Activation Function: A non-linear function is applied to introduce non-linearity

3. Second Linear Transformation: projects the output back to the original dimensionality

where and are weight matrices, and and are bias vectors.

d

FFN(x) = W2 ⋅ ReLU(W1 ⋅ x + b1) + b2

W1 W2 b1 b2

207

Skip connection (original paper “Deep Residual Learning for Image

Recognition” 2015 by He et al.)

Skip connection

Skip connections address the vanishing (and exploding) gradient problems

Consider a neural network layer with an input and a desired underlying function .

Incorporating a skip connection, the layer is restructured to model a residual
. Thus, the output of this layer becomes:

Benefits:

Enhanced Gradient Flow

Faster convergence and higher accuracy

x H(x)

F(x) = H(x) − x

y = F(x) + x

208

Multi-head attention

Multi-Head Attention captures various aspects of the data.

The mechanism computes multiple attention functions (heads) in parallel.

Each head operates on linearly projected versions of the queries, keys, and values

Each head computes the attention scores

where is the dimension of the key vectors

Concatenation

The outputs of all heads are concatenated and projected through a final linear layer:

k

Attention(Qk,Kk,Vk) = softmax (

XQT
kKkX

√dk
)XV T

k

dk

MultiHead(Q,K,V) = Concat(head1, … , headh)P

The multi head matrix is , where - is the number of head, - the size of the
projection space of head k - is a projection matrix combining the heads.

Benefits

Diverse Representations: Each head can capture different features or relationships within the
data, enabling the model to understand various aspects of the input (grammar, style,
“meaning”…).

→ Parallel Processing: Multiple heads allow the model to process different parts of the
sequence simultaneously, improving efficiency.

→ Enhanced Capacity: By attending to information from different subspaces, the model can
capture complex patterns and dependencies.

d × d h dk = d/h
P

209

Fine tuning

After a pretraining step that ressembles closely to a decoder…

ChatGPT fine tuning (from A. Karpathy lecture)

210

Exercices

211

Schur Complement Lemma

Let A be a square matrix partitioned as follows:

Assuming that is invertible, the Schur complement of in A is defined as:

The lemma states that if A is invertible, then A is invertible if and only if S is invertible. Additionally,
the inverse of A can be expressed as:

To demonstrate the Schur complement lemma, we can follow these

A = []

A11 A12

A21 A22

A11 A11

S = A22 − A21A
−1
11 A12

A−1 = []

A−1
11 + A−1

11 A12S
−1A21A

−1
11 A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

1. Start with the matrix equation , where is invertible and partitioned as described
above.

2. Write the equation using the partitioned form of matrix A:

3. Apply block matrix operations to rewrite the equation:

AX = B A

[] [] = []

A11 A12

A21 A22

X1

X2

B1

B2

A11X1 + A12X2 = B1

A21X1 + A22X2 = B2

4. Solve the first equation for :

5. Substitute this value of into the second equation:

6. Simplify the equation:

7. We can see that the coefficient matrix for is the Schur complement,

8. Therefore, can be calculated as:

9. Finally, we can substitute the values of and to obtain the solution vector :

X1

X1 = A−1
11 (B1 − A12X2)

X1

A21A
−1
11 (B1 − A12X2) + A22X2 = B2

SX2 = B2 − A21A
−1
11 B1

X2

S = A22 − A21A
−1
11 A12

X2

X2 = S−1(B2 − A21A
−1
11 B1)

X1 X2 X

X = [] = [] =
X1

X2

A−1
11 (B1 − A12S

−1(B2 − A21A
−1
11 B1))

S−1(B2 − A21A
−1
11 B1)

[] []

A−1 + A−1A S−1A A−1 A−1A S−1 B
212

Conditional Gaussian

Demonstrate the form of the distribution of when both vectors are gaussian.

We have the joint gaussian distribution of :

We can proceed in three step:

1. Compute the concentration matrix

2. Write the joint distribution into a sum of marginal in and conditonal in

3. Derive the conditional distribution.

Concentration matrix

The joint covariance matrix is partitioned as:

x1|x2

()

x1

x2

() ∼ N (μ, Σ)
x1

x2

Σ−1 = Λ
x2 x1

The concentration matrix can be expressed as:

where the blocks of the concentration matrix are given by:

Here, is obtained using the Schur complement of in

:

Decompose the joint distribution

The quadratic form of the joint distribution decomposes as follow

Σ = [].
Σ11 Σ12

Σ21 Σ22

Λ = Σ−1

Λ = [],
Λ11 Λ12

Λ21 Λ22

Λ11 = (Σ11 − Σ12Σ−1
22 Σ21)−1, Λ12 = −Λ11Σ12Σ−1

22 ,

Λ21 = −Σ−1
22 Σ21Λ11, Λ22 = Σ−1

22 + Σ−1
22 Σ21Λ11Σ12Σ−1

22 .

Λ11 Σ11

Σ

Λ11 = (Σ11 − Σ12Σ−1
22 Σ21)−1.

Replacing the with their expression in function of the , we eventually get

where

Derive the conditional distribution

The joint distribution of , where

can be expressed as a product of the marginal distribution of and the conditional distribution of
 given .

Q = (x1 − μ1)TΛ11(x1 − μ1) + 2(x1 − μ1)TΛ12(x2 − μ2) + (x2 − μ2)TΛ22(x2 − μ2)

Λij Σij

Q =(x1 − (μ1 + Σ12Σ−1
22 (x2 − μ2)))TΣ−1

1|2(x1 − (μ1 + Σ12Σ−1
22 (x2 − μ2)))+

(x2 − μ2)TΣ−1
22 (x2 − μ2)

Σ1|2 = (Σ11 − Σ12Σ−1
22 Σ21)−1 = Λ11

(x1,x2) ∼ N(μ, Σ)

μ = [], Σ = [],
μ1

μ2

Σ11 Σ12

Σ21 Σ22

x2
x1 x2

The joint log-probability is:

Expanding each term: 1. The marginal distribution of :

with the log-density:

2. The conditional distribution of given :

where

The log-density is:

log p(x1,x2) = log p(x2) + log p(x1|x2).

x2

p(x2) ∼ N(μ2, Σ22),

log p(x2) = −
1
2

(x2 − μ2)TΣ−1
22 (x2 − μ2) −

1
2

log |Σ22| −
d2

2
log(2π).

x1 x2

p(x1|x2) ∼ N(μ1|2, Σ1|2),

μ1|2 = μ1 + Σ12Σ−1
22 (x2 − μ2), Σ1|2 = Σ11 − Σ12Σ−1

22 Σ21.

Thus, the joint distribution can be written as:

log p(x1|x2) = −
1
2

(x1 − μ1|2)TΣ−1
1|2(x1 − μ1|2) −

1
2

log |Σ1|2| −
d1

2
log(2π).

log p(x1,x2) = log p(x2) + log p(x1|x2).

213

Stochastic Gradient and linear regression

The Mean Squared Error can be expressed as a sum of the available sample :

The gradient

is expressed as

Online regression code

(yi, xi)i

Q(w) =
1
n
∑

i

∥yi − wtxi∥
2 =

1
n
∑

i

Qi(w)

∇Qi(w) = −2xi(yi − wtxi)

library(ggplot2)1
library(patchwork) # Pour afficher les graphes côte à côte2

3
Fonction de régression linéaire séquentielle4
regression.online <- function(X, Y, max.iteration = 300) {5
 p <- ncol(X)6
 n <- nrow(X)7
 X <- cbind(1, X) # Ajout de l'intercept8

Comparison with batch approach

 9
 shuffling <- sample(1:n, n)10
 X <- X[shuffling,]11
 Y <- Y[shuffling]12
 Q<-rep(0,max.iteration)13
 W <- rep(0, p + 1) # Initialisation des coefficients14
 for (i in 1:max.iteration) {15
 idx <- (i - 1) %% n + 116
 x <- drop(X[idx,]) # Sélection d'un point (matrice 1x(p+1))17
 y <- Y[idx]18
 W <- W + (1 / i) * x * (y - drop(rbind(W) %*% cbind(x))) # Mise à jour du vecteur de poids19
 Q[i]<-mean((Y - X %*% cbind(W))^2)20
 }21

22
 return(list(W=W,Q=Q))23
}24

Génération des données1
set.seed(123)2
x <- rnorm(200, sd = 2)3
y <- 1 + 3 * x + rnorm(200, sd = 1)4

5
Ajustement avec lm6
lm_model <- lm(y ~ x)7
lm_coef <- coef(lm_model) # Coefficients de lm8

9
Ajustement avec la régression séquentielle10
online_res <- regression.online(matrix(x, ncol = 1), y)11
online_coef<-online_res$W12

13
Création d'un dataframe pour ggplot14
df <- data.frame(x = x, y = y)15

16
Graphique 1 : Régression classique avec lm17
p1 <- ggplot(df, aes(x = x, y = y)) +18

MSE minimisation

 geom_point(color = "gray50", alpha = 0.6) + 19
 geom_abline(intercept = lm_coef[1], slope = lm_coef[2], color = "blue", lwd = 1.2) +20
 annotate("text", x = min(x), y = max(y), 21
 label = sprintf("lm: y = %.2f + %.2f*x", lm_coef[1], lm_coef[2]),22
 hjust = 0, color = "blue", size = 5) +23
 labs(title = "Régression classique (lm)",24
 x = "x", y = "y") +25

th i i l()26

library(ggplot2)1
2

Données pour la courbe de la régression online3
df_online <- data.frame(4
 MSE = online_res$Q, 5
 Iteration = 1:length(online_res$Q)6
)7

8
MSE de la régression classique9
mse_lm <- mean(lm_model$residuals^2)10

11
Graphique avec ggplot212
ggplot(df_online, aes(x = Iteration, y = MSE)) +13
 geom_line(color = "black", size = 1, aes(linetype = "Online")) + # Courbe Online en noir14
 geom_hline(aes(yintercept = mse_lm, linetype = "Classical"), color = "red", size = 1) + # Ligne lm en rouge15
 scale_linetype_manual(name = "Méthode", values = c("Online" = "solid", "Classical" = "dashed")) + # Légende16
 labs(17
 title = "Évolution du MSE en régression online",18
 x = "Itération",19
 y = "MSE"20
) +21
 theme_minimal()22

214

What is the KL (Kullback–Leibler) divergence between two

multivariate Gaussian distributions?

 between two distributions and of a continuous random variable is given by:

And probabilty density function of is given by:

Now, let our two Normal distributions be and , both dimensional.

KL divergence P Q

DKL(p||q) = ∫

x

p(x) log
p(x)
q(x)

multivariate Normal distribution

p(x) =
1

(2π)k/2|Σ|1/2
exp(−

1
2

(x − μ)TΣ−1(x − μ))

N (μp, Σp) N (μq, Σq) k

Now, since in the second term , we can write it as
, where is the trace operator. And using the trace trick (eq 16

of section 1.1 from), we can write it as .

The second term now is,

The expectation and trace can be interchanged to get,

DKL(p||q) = Ep [log(p) − log(q)]

= Ep [
1
2

log
|Σq|
|Σp|

−
1
2

(x − μp)TΣ−1
p (x − μp) +

1
2

(x − μq)TΣ−1
q (x − μq)]

=
1
2

Ep [log
|Σq|
|Σp|

]−
1
2

Ep [(x − μp)TΣ−1
p (x − μp)] +

1
2

Ep [(x − μq)TΣ−1
q

=
1
2

log
|Σq|
|Σp|

−
1
2

Ep [(x − μp)TΣ−1
p (x − μp)] +

1
2

Ep [(x − μq)TΣ−1
q (x − μ

(x − μp)TΣ−1
p (x − μp) ∈ R

tr{(x − μp)TΣ−1
p (x − μp)} tr{}
Matrix Cookbook tr{(x − μp)(x − μp)TΣ−1

p }

=
1
2

Ep [tr{(x − μp)(x − μp)TΣ−1
p }]

We know . Simplifying it to

We can simplify the third term

Combining all this we get,

=
1
2
tr{Ep [(x − μp)(x − μp)TΣ−1

p]}

=
1
2
tr{Ep [(x − μp)(x − μp)T]Σ−1

p }

Ep [(x − μp)(x − μp)T] = Σp

=
1
2
tr{ΣpΣ−1

p }

=
1
2
tr {Ik}

=
k

2

Ep [(x − μq)TΣ−1
q (x − μq)] = Ep [(x − μp + μp − μq)TΣ−

q

= Ep [(μp − μq)TΣ−1
q (μp − μq) + tr{Σ−1

q Σp} + 2(μ

= (μp − μq)TΣ−1
q (μ

215

Kullback–Leibler divergence between two multivariate Gaussian

distributions

Compact form

When is

DKL(p||q) =
1
2
[log

|Σq|
|Σp|

− k + (μp − μq)TΣ−1
q (μp − μq) + tr{Σ−1

q Σp}]

q N (0, I)

DKL(p||q) =
1
2
[μT

p μp + tr {Σp} − k − log |Σp|]

216

