
A Constrained EM Algorithm for PCA (from Ahn,
J.-H. and J.-H. Oh, 2003)

upper<-function(A){A[lower.tri(A,diag=FALSE)]<-0;return(A)}1
lower<-function(A){A[upper.tri(A,diag=FALSE)]<-0;return(A)}2
PCA.EM<-function(X,q=2){3
  p<-ncol(X); n<-nrow(X)4
  W<-diag(p)[,1:q]; M<-X%*%W # Initialisation5
  Jold<-0; J<-1; iteration<-0; Error<-NULL6
  while ((abs(J - Jold)>1e-3)){7
    Jold<-sum((X-M%*%t(W))^2)8
    S <- solve(upper(t(W)%*%W)); M<- X%*%W%*%S # E-step9
    W<- (t(X)%*%M)%*%solve(lower(n*S+t(M)%*%M))# M-step10
    W<-apply(W,2,function(x){x/sqrt(sum(x^2))})#orthogonalisation11
    J<-sum((X-M%*%t(W))^2); Error[iteration<-iteration+1]<-J12
  } 13
  return(list(W=data.frame(W),M=data.frame(M),Error=Error))}14

23

Neural networks and
unsupervised learning
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Modeling of a neuron

The �rst modeling of the neuron was suggested in the 1940s by
Mac Culloch and Pitts. It was a unit which according to several
signals transmitted a binary response.

In general, a formal neuron has

dendrites which receive the input signal and

an axon which transmits the output signal

The input signal

 is a vector belonging most often to  or .
Dendrites

are characterized by a weight vector 
The output

is a function of  and , which is the composition of an input
function,  and an output (or activation) function, 
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The neuron as a funtion

Most of the time the input function is a simple dot product:

The activation functions are diverse but belong to large families
(radial bases, sigmoid functions …).

A typical activation function is for example:

The functions which have this appearance are said to be sigmoid
27

Neural networks
Neurons can be connected to each other and then form a
network.

Learning consists of adjusting the free network parameters
according to the desired goal, that is, to calculate the values of
the weight vectors as a function of the inputs.

Two layers networks
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Hebbian Learning (Hebb 1949)
Principle

An increase of synaptic strength between an input and an output
neuron may be related to the �ring rates of the input and output
[Hebb, 1949].
Practical implementation

As a result, synaptic strengths will increase fastest between pairs
of neurons whose responses are correlated, and the resulting
increase in synaptic strength will lead to a further increase in the
correlation.

or in scalar form with implicit n-dependence,

Increasing the correlation in this manner may lead to a useful
pattern of synaptic strengths over a population of neurons.
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Stochastic Gradient Descent (from Wikipedia)

Statistical estimation and machine learning consider the problem
of minimizing an objective function that has the form of a sum:

where the parameter  that minimizes  is to be estimated.

Each summand function  is typically associated with the 
observation in the data set (used for training).

Sum-minimization problems arise:

in least squares and in maximum-likelihood estimation,

empirical risk minimization.

When used to minimize the above function, a standard (or “batch”)
gradient descent method would perform the following iterations:

where  is a step size (sometimes called the learning rate in
machine learning).
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Iterative method

Fluctuations in the total objective function as gradient steps with
respect to mini-batches are taken.

In stochastic (or “on-line”) gradient descent, the true gradient is
approximated by a gradient at a single example:

- As the algorithm sweeps through the training set, it performs the
above update for each training example. - Several passes can be
made over the training set until the algorithm converges. - If this is
done, the data can be shu�ed for each pass to prevent cycles. -
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Stochastic Gradient in pseudocode
1. Choose an initial vector of parameters  and learning rate 

2. Repeat until an approximate minimum is obtained:

a. Randomly shu�e examples in the training set.

b. For  do: 
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Adaptative learning rate

A distinction exists between constant gain algorithms,

and decreasing gain algorithms,

The �rst are dedicated to the estimation of parameters changing
slowly over time and the second to the estimation of stable
parameters.

33

K-means and Winner take all

is a computational principle applied in computational models of
neural networks by which neurons in a layer compete with each
other for activation.

The simplest form of competitive learning modi�es only the weight
vector of “the best” neuron at every stage of learning.

In fact, with each presentation of a input (a vector of the training
set), two steps are performed:

1. choose the best neuron, i.e. the one that shows the most
important output

2. modify the weight vector of this neuron.



When the activation function is increasing (which is not true for the
functions with radial basis), the winning neuron is the one that
produces the greatest value of function entry.

If we consider a dot product as an input function, the weight vector
of the winner, , checks:

And if the weight vectors are normalized, the winner is the neuron
that has the weight vector, closest to the input , in the sense of
the Euclidean distance.

The coordinates of the winner’s weight vector are updated using a
rule of the type following :

where  is the training step at iteration .
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Stochastic Gradient for Kmeans (online
Kmeans)

The criterion to be optimized can be written as

1. Choose an initial vector of parameters  and learning rate 

2. Repeat until an approximate minimum is obtained:

a. Randomly shu�e examples in the training set.

b. For  do:

1. For 
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Kmeans implementation
kmeans.winner.take.all<-function(X,K=2,max.iteration=2000){1
  p<-ncol(X);  n<-nrow(X);shuffling<-sample(1:n,n)2
  X<-X[shuffling,];  W<-X[sample(1:n,K),]3
  Q<-rep(0,max.iteration); cluster<-rep(0,n)4
  distances<-rep(sum(diag(var(X)))*(n-1)/n,n)5
  for (i in 1:max.iteration){6
    x<-cbind(X[(i-1)%%n + 1,])7
    distances.x.to.W<-sum(x^2)-2*as.matrix(x)%*%t(W)+ colSums(t(W^2))8
    winner.index<-which.min(distances.x.to.W)9
    W[winner.index,]<-W[winner.index,] + 1/i*(x-W[winner.index,])10
    cluster[(i-1)%%n + 1]<-winner.index11
    distances[(i-1)%%n + 1]<-distances.x.to.W[winner.index]12
    Q[i]<-mean(distances) }13
  return(list(W=W,Q=Q,cluster=cluster[order(shuffling)]))14
}15
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One line kmeans example with Fisher iris
data(iris)1
X<-iris[,1:4]2
set.seed(1)3
kmeans.winner.take.all(X,3)->res4
table(res$cluster,iris$Species)5

   
    setosa versicolor virginica
  1     50          0         0
  2      0         45        11
  3      0          5        39
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One line kmeans example with Fisher iris
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PCA and Oja’s rule

Consider a linear neuron with output  that returns a
linear combination of its inputs  using presynaptic weights .

PCA according OJA

Oja’s rule de�nes the change in presynaptic weights  given the
output response  of a neuron to its inputs  to be
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Stochastic Gradient PCA and Oja’s rule

The criterion to be optimized can be written as

where .

1. Choose an initial vector of parameters  and learning rate 

2. Repeat until an approximate minimum is obtained:

a. Randomly shu�e examples in the training set.

b. For  do:
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Oja’s rule implementation
Oja.rule<-function(X,max.iteration=10000,eta=0.001){1
  p<-ncol(X);  n<-nrow(X)2
  w<-rbind(rep(1,p)); w<-w/(sqrt(sum(w^2)))3
  Q<-rep(0,max.iteration)4
  for (i in 1:max.iteration){5
    Q[i]<- 1/(2*n) *sum((X - X%*%t(w)%*%w)^2)6
    x<-X[(i-1)%%n + 1,]7
    y<-sum(w*x)8
    w<-w + eta*y*(x-w*y)}9
  return(list(w=w,Q=Q))10
}11
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Oja’s rule example with Fisher iris
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