
Variational auto-encoder
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Variational autoencoder ideas
The original papers

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014, June).
Stochastic backpropagation and approximate inference in deep
generative models. In International conference on machine
learning (pp. 1278-1286). PMLR.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.

Main reference

Diederik P. Kingma and Max Welling (2019), “An Introduction to
Variational Autoencoders”, Foundations and Trends R in
Machine Learning:

What is does



generate realistic samples of data,

allow for accurate imputations of missing data,

high-dimensional data visualisation

Clustering

How it works

Latent variables models which marry ideas from

approximate Bayesian inference

ELBO (Evidence Lower BOund)

Reparametrization

deep neural networks

Stochastic Gradient Descent

Retropropagation of the Gradient

to represent an approximate posterior distribution through
variational lower bound optimization
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Auto-encoder Structure

Auto-encoder Structure
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What is a VAE ?
Coupling of 2 parametric models

VAE is a latent variable vector  and an observation 

encoder  (recognition model): , which is approximated
by 

decoder  (generative model): 

encoder and decoder could be neural networks

Optimization of ELBO via Stochastic Gradient Ascent



The VAE ELBO approximates the likelihood of a latent variable
model

The Gradient computation uses the re-parametrization trick

Each step of the gradient ascent augment the ELBO as an EM
iteration
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Example of use
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Data

Left batch of original training set - right : random generation of
images
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Learning from data

Frey image learning
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New Data generation from latent simulation

Frey image generation
52



Data representation in latent space

Frey image representation
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Missing data imputation after learning

Frey image pixel imputation
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Ingredient:
Parameterization of
conditional distributions
with Neural Networks
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Modeling joint distribution
: Observed random variables

 : underlying unknown distribution

: model distribution

Goal: 

We wish �exible 
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Modeling Conditional distribution
Classi�cation and regression
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Parameterization of conditional distributions
with Neural Networks
Classi�cation
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Ingredient: Stochastic
Gradient
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What differences between Oja’s rule and VAE
What is a VAE ?

Coupling of 2 parametric models

decoder (generative model):  where 

encoder (recognition model):  where  is
approximated by 

In Oja’s rule
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Factor analysis generalizes Oja and is closer to
a VAE

Factor analysis considers the observation 

where

the noise 

the hidden (latent) vector 

the mean is a linear function of the (hidden) inputs

 is a  matrix, known as the factor loading matrix,

 is a  covariance matrix that we take to be diagonal

The special case in which  is called probabilistic
principal components analysis or PPCA.
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Ingredient : Evidence
Lower BOund
Minimization
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Missing data

In a missing data framework the log-likelihood of the parameters is
advantageously expressed as

Approximation

When the distribution of  is intractable, an approximation
 is used

 is the inverse function for  in a Bayes sense
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ELBO

where

from Jensen
67

Two for one
VAE �nds parameters which approximately maximize the
marginal likelihood  (good generative function)

VAE �nds the approximation of the recognition model which
minimizes the KL divergence
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Alternative formulation of ELBO

ELBO can be rewritten as

For a suited choice of  and , 
can be calculated in closed form.
Exercices

1. Show that the ELBO can be rewritten as above

2. Compute the KL divergence between two multivariate
Gaussians
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The ELBO is maximized by Stochastic Gradient

Let  be a i.i.d sample of random vector 

Gradient

The Gradient can be separated into 2 parts

1. 

2. 
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Decoder Gradient: 

Given some usually veri�ed conditions and a Monte Carlo
Approximation
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Encoder Gradient: 

Encoder Gradient is more di�cult to compute since in general

A reparametrization (variable change) trick allows a workaround
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Third ingredient: Encoder
approximation using
Reparametrization and
Monte Carlo
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Encoder function

Let us rewrite the decoder function with a random vector  whose
distribution is not parametrized by :

We just have to compute  after the change of variable
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Reparametrization trick
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Computing  with a change of
variable

where the second term is the log of the absolute value of the
determinant of the Jacobian matrix:
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Factorized Gaussian Posterior
Model

Reparametrization
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Factorized Gaussian Posterior

The Jacobian of the transformation is

The log posterior density is
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Reparametrization trick
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Full Gaussian posterior
Model

Reparametrization

Where  is a lower triangular matrix obtained from a Cholesky
decompostion of 
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Full Gaussian posterior

The Jacobian has a simple form

As the determinant of a triangular matrix is the product of its
diagonal terms,
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Varitional Auto Encoder in
short

84

Algorithm input and output

Input:

: Dataset

 decoding function, with dist. 

 encoding function with dist. 

Output:
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Algorithm

Initialisation of  and 

While SGD not converged do

Draw a random minibatch 

 (Random noise for every datapoint in )

Compute

and

its gradients
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Original example from
Kingma: Gaussian model
with MLP parametrization
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Multivariate Gaussian decoder with a diagonal
covariance structure

Decoder  or decoder (just swap  and ) are assumed to
have multivariate Gaussian dist. with a diagonal covariance
structure:
Decoder

 where 

where  are the weights and biases of
the MLP and part of  when used as decoder.



Encoder

Let us consider the prior 

swap  and  in the decoder above to get 
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Gaussian VAE illustrated
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