
Singular Value
Decomposition
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Singular Value Decomposition
Eigendecomposition of symmetric matrices

, there exist an orthonormal matrix  and a
diagonal matrix 

Singular Value Decomposition

Extend the decomposition to rectangular matrices
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Applications in machine learning

Dimensionality Reduction: SVD can be used for dimensionality
reduction by reducing the rank of a matrix

Recommender Systems: By factorizing the matrix using SVD,
we can identify latent factors or features that capture
underlying patterns and preferences.

Image Compression: SVD is used in image compression
techniques such as JPEG.

Latent Semantic Analysis: By decomposing a term-document
matrix using SVD, LSA can capture the latent semantic
structure of the data

Principal Component Analysis (PCA): PCA is a SVD

Matrix Completion: SVD-based techniques are used in matrix
completion problems, where missing or incomplete data needs
to be imputed.
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Existence of the SVD for general matrices

For any matrix , there exist two orthogonal matrices
,  and a nonnegative, ‘’diagonal’’ matrix

 such that

where  and .
In a vector form

95

Geometrical interpretation

Given any matrix  it de�nes a linear transformation:

The linear transformation  can be decomposed into three
operations:
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Geometrical interpretation
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Different versions of SVD
Full SVD:

- Economy sized (thin, compact) SVD:
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SVD 
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SVD 
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Existence of the SVD

Consider  where 
with  (where

).

Let  and correspondingly form the matrix

De�ne also

for each .

101



Existence of the SVD
Exercice

It is easy to show that the  are orthonormal vectors.
Completion if needed

Choose  (through basis completion) such
that

is an orthogonal matrix.

It veri�es

i.e.,
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Existence of the SVD

Two possible cases:

 by construction.

, which is due to
.

Consequently, we have obtained that
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Properties

The linear application characterized by  has the following
properties:

 is the number of non zero singular values
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Low rank approximation of a matrix 
Goal

Approximate a given matrix  with a rank-k matrix, for a target
rank k.
Motivations

Compression

De-noising

Matrix completion
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A �rst toy example
X<-matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),4,3,byrow=TRUE)1
X.svd<-svd(X)2
cat("Original matrix:\n")3

Original matrix:

print(X)1

     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

k<-21
cat("Approximation of rank 2:\n")2

Approximation of rank 2:

print(X.svd$u[,1:k]%*%diag(X.svd$d[1:k])%*%t(X.svd$v[,1:k]))1

     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

cat("A basis of the column space:\n")1



A basis of the column space:

print(X.svd$u[,1:k])1

           [,1]        [,2]
[1,] -0.1408767 -0.82471435
[2,] -0.3439463 -0.42626394
[3,] -0.5470159 -0.02781353
[4,] -0.7500855  0.37063688

cat("\nA basis of the kernel:\n")1

A basis of the kernel:

print(X.svd$u[,1:k])1

           [,1]        [,2]
[1,] -0.1408767 -0.82471435
[2,] -0.3439463 -0.42626394
[3,] -0.5470159 -0.02781353
[4,] -0.7500855  0.37063688
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Illustration of svd in image compression

Example borrowed from 

The 512 × 512 colour image is stored as three matrices R, B, G of
the same dimension 512×512 giving the intensity of red, green, and
blue for each pixel. Naively storing this matrix requires 5.7Mb.

rich-d-wilkinson.github.io

library(tiff)1
library(rasterImage)2
peppers<-readTIFF("../Silo-Images/Peppers.tiff")3
plot(as.raster(peppers))4
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Illustration of svd in image compression

Below the SVD of the three colour intensity matrices, and the view
the image that results from using reduced rank versions with rank

svd_image <- function(im,k){1
  s <- svd(im)2
  Sigma_k <- diag(s$d[1:k])3
  U_k <- s$u[,1:k]4
  V_k <- s$v[,1:k]5
  im_k <- U_k %*% Sigma_k %*% t(V_k)6
   ## the reduced rank SVD produces some intensities <0 and >1. 7
  # Let's truncate these8
  im_k[im_k>1]=19
  im_k[im_k<0]=010
  return(im_k)11
}12

13
par(mfrow=c(2,2), mar=c(1,1,1,1))14

15

pepprssvd<- peppers16
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Low rank approximation of a matrix 
Frobenius norm

The Frobenius norm of a matrix  is de�ned as

Rank k matrix 

Let
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Low rank approximation of a matrix

For any matrix  with non null singular values
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Proof

We have

We need to show that if  where  and  have k
columns then
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Proof

By the triangle inequality with the spectral norm, if 
then  .

Suppose  and  respectively denote the rank k approximation
to  and  by SVD.

Then, for any 
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Proof

Since , when  and  we
conclude that for 

 Therefore,
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Low rank approximation of a matrix and
projection

If , then we can assume columns  of
 where 

is a set of orthonormal vectors for the linear space of columns of
. First, observe that

Optimum solution is the orthogonal projection



For each term ,the optimum solution is the projection
of  onto :

where 
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Projection on the orthogonal subspace

Consider  the projection matrix on the space orthogonal to
. More precisely, let us add  such that

 form an orthonormal basis of . Then,
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Relation to principal component analysis
Warning

 is considered as centered. This tranformation (cloud
translation allows considerable simpli�cation)
Decomposition of 

Considering the orthonal projection on 
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Criterion

In terms of intertia, PCA maximizes the projected inertia
(approximation) while minimizing the ditances to the space of
projection (error):
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Best low rank approximation

where 
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Different views of the approximation

The approximation

can be considered in multiple ways:

approximation of the row

approximation of the columns

Notations

If  is a data table,



each row  is a description of an individual

each colum  is variable describing  individuals
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Rows approximation (projection of the
individuals)

Transposing the matrix the best low rank approximation becomes

where 
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The approximation error

Each row  is approximated by

where  is the matrix composed of the vectors de�ning .

121

Projection of the variables

 is the projection matrix on 

and
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k �rst principal components

where .

The principal component are the coordinates of the projection of
the rows of  on :
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Percentage of information

We have , thus

and
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Correlations
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Duality

It is easy to show that

the columns of  are the eigenvector of 

the columns of  are the eigenvector of 

Thus the principal component of  are the eigenvectors of
 and vice-versa
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