Singular Value Decomposition

Singular Value Decomposition

Eigendecomposition of symmetric matrices
$\forall \boldsymbol{A} \in \mathbb{R}^{n \times n}$, there exist an orthonormal matrix $\boldsymbol{Q} \in R^{n \times n}$ and a diagonal matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$

$$
A=\boldsymbol{Q} \mathbf{\Lambda} \boldsymbol{Q}^{T}
$$

Singular Value Decomposition
Extend the decomposition to rectangular matrices

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\boldsymbol{T}}
$$

Applications in machine learning

- Dimensionality Reduction: SVD can be used for dimensionality reduction by reducing the rank of a matrix
- Recommender Systems: By factorizing the matrix using SVD, we can identify latent factors or features that capture underlying patterns and preferences.
- Image Compression: SVD is used in image compression techniques such as JPEG.
- Latent Semantic Analysis: By decomposing a term-document matrix using SVD, LSA can capture the latent semantic structure of the data
- Principal Component Analysis (PCA): PCA is a SVD
- Matrix Completion: SVD-based techniques are used in matrix completion problems, where missing or incomplete data needs to be imputed.

Existence of the SVD for general matrices

For any matrix $\boldsymbol{X} \in \mathbb{R}^{n \times d}$, there exist two orthogonal matrices $\boldsymbol{U} \in \mathbb{R}^{n \times n}, \boldsymbol{V} \in \mathbb{R}^{d \times d}$ and a nonnegative, "diagonal" matrix $\boldsymbol{S} \in \mathbb{R}^{n \times d}$ such that

$$
\boldsymbol{X}_{n \times d}=\boldsymbol{U}_{n \times n} \boldsymbol{S}_{n \times d} \boldsymbol{V}_{d \times d}^{T}
$$

where $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}$ and $\boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}$.
In a vector form

$$
\boldsymbol{X}_{n \times d}=\sum_{j=1}^{r} S_{j j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{T}
$$

Geometrical interpretation

Given any matrix $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ it defines a linear transformation:

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}, f(\boldsymbol{x})=\boldsymbol{X} \boldsymbol{x}
$$

The linear transformation f can be decomposed into three operations:

Geometrical interpretation

Different versions of SVD

- Full SVD:

$$
X_{n \times d}=\boldsymbol{U}_{n \times n} \boldsymbol{S}_{n \times d} \boldsymbol{V}_{d \times d}^{T}
$$

- Economy sized (thin, compact) SVD:

$$
X_{n \times d}=\boldsymbol{U}_{n \times r} \boldsymbol{S}_{r \times r} \boldsymbol{V}_{r \times d}^{T}
$$

SVD $n>d$

SVD $n<d$

Existence of the SVD

Consider $\boldsymbol{A}=\boldsymbol{X}^{T} \boldsymbol{X}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T}$ where $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{d}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{r}>0=\lambda_{r+1}=\cdots=\lambda_{d}$ (where $r=\operatorname{rank}(\boldsymbol{X}) \leq d)$.

Let $\sigma_{i}=\sqrt{\lambda_{i}}$ and correspondingly form the matrix

$$
\boldsymbol{S}_{n \times d}=\left(\begin{array}{cc}
\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right) & 0_{r \times(d-r)} \\
0_{(n-r) \times r} & 0_{(n-r) \times(d-r)}
\end{array}\right)
$$

Define also

$$
\boldsymbol{u}_{i}=\frac{1}{\sigma_{i}} \boldsymbol{X} \boldsymbol{v}_{i} \in \mathbb{R}^{n}
$$

for each $1 \leq i \leq r$.

Existence of the SVD

Exercice

It is easy to show that the $\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{r}$ are orthonormal vectors. Completion if needed

Choose $\boldsymbol{u}_{r+1}, \cdots, \boldsymbol{u}_{n} \in \mathbb{R}^{n}$ (through basis completion) such that

$$
\boldsymbol{U}=\left[\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{n}\right] \in \mathbb{R}^{n \times n}
$$

is an orthogonal matrix.

It verifies

$$
\boldsymbol{X} \boldsymbol{V}=\boldsymbol{U} \boldsymbol{S}
$$

i.e.,

Existence of the SVD

$\boldsymbol{X}\left[\boldsymbol{v}_{1}, \cdots \boldsymbol{v}_{r} \boldsymbol{v}_{r+1} \cdots \boldsymbol{v}_{d}\right]=\left[\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{r} \boldsymbol{u}_{r+1} \boldsymbol{u}_{n}\right]\left(\begin{array}{cr}\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right) & 0_{r} \\ 0_{(n-r) \times r} & 0_{(n-}\end{array}\right.$
Two possible cases:

- $1 \leq i \leq r: \boldsymbol{X} \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$ by construction.
- $i>r: \boldsymbol{X} \boldsymbol{v}_{i}=0$, which is due to

$$
\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{v}_{i}=\boldsymbol{C} \boldsymbol{v}_{i}=0 \boldsymbol{v}_{i}=0
$$

Consequently, we have obtained that

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}
$$

Properties

The linear application characterized by \boldsymbol{X} has the following properties:

- $\operatorname{rank}(\boldsymbol{X})=r$ is the number of non zero singular values
- $\operatorname{kernel}(\boldsymbol{X})=\operatorname{span}\left(\boldsymbol{v}_{r+1}, \cdots, \boldsymbol{v}_{n}\right)$
- $\operatorname{range}(\boldsymbol{X})=\operatorname{span}\left(\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{r}\right)$

Low rank approximation of a matrix X

Goal

Approximate a given matrix \boldsymbol{X} with a rank-k matrix, for a target rank k.

Motivations

- Compression
- De-noising
- Matrix completion

A first toy example

```
1 X<-matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),4,3,byrow=TRUE)
2 X.svd<-svd(X)
3 \text { cat("Original matrix:\n")}
```


Original matrix:

1 print(X)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	2	3
$[2]$,	4	5	6
$[3]$,	7	8	9
$[4]$,	10	11	12

$1 \mathrm{k}<-2$
2 cat("Approximation of rank 2:\n")
Approximation of rank 2:
1 print(X.svd\$u[,1:k]\%*\%diag(X.svd\$d[1:k])\%*\%t(X.svd\$v[,1:k]))

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	2	3
$[2]$,	4	5	6
$[3]$,	7	8	9
$[4]$,	10	11	12

1 cat("A basis of the column space:\n")

A basis of the column space:

```
    1 print(X.svd$u[,1:k])
    [,1] [,2]
[1,] -0.1408767 -0.82471435
[2,] -0.3439463 -0.42626394
[3,] -0.5470159 -0.02781353
[4,] -0.7500855 0.37063688
    1 cat("\nA basis of the kernel:\n")
```

A basis of the kernel:
1 print(X.svd\$u[,1:k])
[,1] [,2]
$[1]-0.1408767-$,
[2,] $-0.3439463-0.42626394$
[3,] -0.5470159 -0.02781353
[4,] -0.7500855 0.37063688

Illustration of svd in image compression

Example borrowed from rich-d-wilkinson.github.io

The 512×512 colour image is stored as three matrices R, B, G of the same dimension 512×512 giving the intensity of red, green, and blue for each pixel. Naively storing this matrix requires 5.7 Mb .

```
library(tiff)
2 library(rasterImage)
3 peppers<-readTIFF("../Silo-Images/Peppers.tiff")
4 plot(as.raster(peppers))
```


Illustration of svd in image compression

Below the SVD of the three colour intensity matrices, and the view the image that results from using reduced rank versions with rank $k \in\{5,30,100,300\}$

```
svd_image <- function(im,k) {
    s <- svd(im)
    Sigma_k <- diag(s$d[1:k])
    U_k <- s$u[,1:k]
    V_k <- s$v[,1:k]
    im_k <- U_k %*% Sigma_k %*% t(V_k)
        ## the reduced rank SVD produces some intensities <0 and >1.
    # Let's truncate these
    im_k[im_k>1]=1
    im_k[im_k<0]=0
    return(im_k)
}
par(mfrow=c(2,2), mar=c(1,1,1,1))
pepprssvd<- peppers
```


Low rank approximation of a matrix \boldsymbol{X}

Frobenius norm

The Frobenius norm of a matrix \boldsymbol{X} is defined as

$$
\|\boldsymbol{X}\|_{F}^{2}=\sum_{i j} X_{i j}^{2}=\operatorname{trace}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)=\sum_{j=1}^{r} \sigma_{j}^{2}
$$

Rank k matrix $\hat{\boldsymbol{X}}_{k}$

Let

$$
\hat{\boldsymbol{X}}_{k}=\sum_{j=1}^{k} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{T}
$$

Low rank approximation of a matrix

For any matrix $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ with non null singular values

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}
$$

$$
\begin{array}{r}
\hat{\boldsymbol{X}}_{k}=\arg \min _{\hat{X}: \operatorname{rank}(\hat{X})=k}\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|_{F}^{2} \\
\min _{\hat{X}: \operatorname{rank}(\hat{X})=k}\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|_{F}^{2}=\sum_{j=k+1}^{r} \sigma_{j}^{2}
\end{array}
$$

Proof

We have

$$
\left\|X-X_{k}\right\|_{F}^{2}=\left\|\sum_{i=k+1}^{n} \sigma_{i} u_{i} v_{i}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{n} \sigma_{i}^{2}
$$

We need to show that if $Y_{k}=A B^{\top}$ where A and B have k columns then

$$
\left\|X-X_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{n} \sigma_{i}^{2} \leq\left\|X-Y_{k}\right\|_{F}^{2}
$$

Proof

By the triangle inequality with the spectral norm, if $X=X^{\prime}+X^{\prime \prime}$ then $\sigma_{1}(X) \leq \sigma_{1}\left(X^{\prime}\right)+\sigma_{1}\left(X^{\prime \prime}\right)$.

Suppose X_{k}^{\prime} and $X_{k}^{\prime \prime}$ respectively denote the rank k approximation to X^{\prime} and $X^{\prime \prime}$ by SVD.

Then, for any $i, j \geq 1$

$$
\begin{aligned}
\sigma_{i}\left(X^{\prime}\right)+\sigma_{j}\left(X^{\prime \prime}\right) & =\sigma_{1}\left(X^{\prime}-X_{i-1}^{\prime}\right)+\sigma_{1}\left(X^{\prime \prime}-X_{j-1}^{\prime \prime}\right) \\
& \geq \sigma_{1}\left(X-X_{i-1}^{\prime}-X_{j-1}^{\prime \prime}\right) \\
& \geq \sigma_{1}\left(X-X_{i+j-2}\right) \quad\left(\text { since } \operatorname { r a n k } \left(X_{i-1}^{\prime}\right.\right. \\
& =\sigma_{i+j-1}(X) .
\end{aligned}
$$

Proof

Since $\sigma_{k+1}\left(Y_{k}\right)=0$, when $X^{\prime}=X-Y_{k}$ and $X^{\prime \prime}=Y_{k}$ we conclude that for $i \geq 1, j=k+1$

$$
\begin{aligned}
& \sigma_{i}\left(X-Y_{k}\right)+\underbrace{\sigma_{k+1}\left(Y_{k}\right)}_{0} \geq \sigma_{k+i}(X) \text {. Therefore, } \\
& \left\|X-Y_{k}\right\|_{F}^{2}=\sum_{i=1}^{n} \sigma_{i}\left(X-Y_{k}\right)^{2} \geq \sum_{i=k+1}^{n} \sigma_{i}(X)^{2}=\| X-X_{k}
\end{aligned}
$$

Low rank approximation of a matrix and projection

If $\operatorname{rank}(\hat{X})=k$, then we can assume columns \hat{X}_{i} of
$\hat{\boldsymbol{X}} \in E_{k}=\operatorname{span}\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{k}\right\}$ where $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{k}\right\}$ is a set of orthonormal vectors for the linear space of columns of X_{k}. First, observe that

$$
\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|_{F}^{2}=\sum_{i}\left\|X_{i}-\hat{X}_{i}\right\|^{2}
$$

Optimum solution is the orthogonal projection

For each term $\left\|X_{i}-v\right\|_{2}^{2}$,the optimum solution is the projection of X_{i} onto $E_{k}=\operatorname{span}\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{k}\right\}$:

$$
\hat{X}_{i}=\sum_{j=1}^{k}\left\langle X_{i}, \boldsymbol{w}_{j}\right\rangle \boldsymbol{w}_{j}=\Pi_{E_{k}} X_{i}
$$

where $\Pi_{E_{k}}=\sum_{j=1}^{k} \boldsymbol{w}_{j} \boldsymbol{w}_{j}^{T}$

Projection on the orthogonal subspace

Consider $\Pi_{E_{k}^{\perp}}$ the projection matrix on the space orthogonal to E_{k}. More precisely, let us add $\boldsymbol{w}_{k+1}, \cdots, \boldsymbol{w}_{n}$ such that $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{n}$ form an orthonormal basis of \mathbb{R}^{n}. Then,

$$
\begin{gathered}
\Pi_{E_{k}^{\perp}}=\sum_{j=k+1}^{n} \boldsymbol{w}_{j} \boldsymbol{w}_{j}^{T} \\
\|X-\hat{X}\|_{F}^{2}=\left\|X-\Pi_{E_{k}} X\right\|_{F}^{2}=\left\|\left(I-\Pi_{E_{k}}\right) X\right\|_{F}^{2}=\| \Pi_{E_{k}^{\perp}} X
\end{gathered}
$$

Relation to principal component analysis

Warning

\boldsymbol{X} is considered as centered. This tranformation (cloud translation allows considerable simplification)
Decomposition of X
Considering the orthonal projection on E_{k}

$$
\boldsymbol{X}=\Pi_{E_{k}} \boldsymbol{X}+\Pi_{E_{k}^{\perp}} \boldsymbol{X}
$$

Criterion

$$
\|\boldsymbol{X}\|_{F}^{2}=\underbrace{\left\|\Pi_{E_{k}} \boldsymbol{X}\right\|_{F}^{2}}_{\text {approximation }}+\underbrace{\left\|\Pi_{E_{k}^{\perp}} \boldsymbol{X}\right\|_{F}^{2}}_{\text {error }}
$$

In terms of intertia, PCA maximizes the projected inertia (approximation) while minimizing the ditances to the space of projection (error):

$$
I_{T}=I_{E}+I_{E_{k}^{\perp}}
$$

Best low rank approximation

$$
\hat{\boldsymbol{X}}_{k}=\Pi_{E_{k}} \boldsymbol{X}=\sum_{j=1}^{k} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{T}=\boldsymbol{U}_{\bullet, 1: k} \boldsymbol{S}_{1: k, 1: k} \boldsymbol{V}_{\bullet, 1: k}^{T}
$$

where $\boldsymbol{X}=\underbrace{\boldsymbol{U}}_{n \times n} \underbrace{\boldsymbol{S}}_{n \times k} \underbrace{\stackrel{T}{\boldsymbol{V}}}_{d \times d}$

Different views of the approximation

The approximation

$$
\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|_{F}^{2}
$$

can be considered in multiple ways:

- approximation of the row
- approximation of the columns

Notations

If \boldsymbol{X} is a data table,

- each row \boldsymbol{x}_{i}^{T} is a description of an individual
- each colum X_{j} is variable describing n individuals

Rows approximation (projection of the individuals)

Transposing the matrix the best low rank approximation becomes

$$
\hat{\boldsymbol{X}}^{T}{ }_{k}=\Pi_{F_{k}} \boldsymbol{X}^{T}=\sum_{j=1}^{k} \sigma_{j} \boldsymbol{v}_{j} \boldsymbol{u}_{j}^{T}=\boldsymbol{V}_{\bullet, 1: k} \boldsymbol{S}_{1: k, 1: k} \boldsymbol{U}_{\bullet, 1: k}^{T}
$$

where $F_{k}=\operatorname{span}\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k}\right\}$

The approximation error

$$
\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|_{F}^{2}=\left\|\boldsymbol{X}^{T}-\hat{\boldsymbol{X}}^{T}\right\|_{F}^{2}=\quad \sum_{i}\left\|\boldsymbol{x}_{i}-\hat{\boldsymbol{x}}_{i}\right\|_{2}^{2}
$$

Each row \boldsymbol{x}_{i} is approximated by

$$
\hat{\boldsymbol{x}}_{i}=\Pi_{F_{k}} \boldsymbol{x}_{i}=V_{F_{k}} V_{F_{k}}^{T} \boldsymbol{x}_{i}
$$

where $\boldsymbol{V}_{F_{k}}$ is the matrix composed of the vectors defining F_{k}.

Projection of the variables

$\Pi_{E_{k}}$ is the projection matrix on $E=\operatorname{span}\left(\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{k}\right)$

$$
\Pi_{E}=\boldsymbol{U}_{E_{k}} \boldsymbol{U}_{E_{k}}^{T}
$$

and

$$
\Pi_{E_{k}} \boldsymbol{X}=\boldsymbol{U}_{1: n, 1: k} \underbrace{\boldsymbol{U}_{1: n, 1: k}^{T} \boldsymbol{U}_{1: n, 1: n}}_{\left(I_{k}, 0_{k, n-k}\right)} \boldsymbol{S}_{1: n, 1: k} \boldsymbol{V}_{1: d, 1: d}^{T}=\boldsymbol{U}_{1: n, 1: k} \boldsymbol{S}_{1: k}
$$

k first principal components

$$
\boldsymbol{C}_{1: n, 1: k}=\boldsymbol{U}_{E_{k}} \boldsymbol{S}_{1: k, 1: k}
$$

where $\boldsymbol{S}_{1: k, 1: k}=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}\right)$.
The principal component are the coordinates of the projection of the rows of \boldsymbol{X} on F_{k} :

$$
\boldsymbol{C}_{1: n, 1: k}=\boldsymbol{X} \boldsymbol{V}_{1: d, 1: k}
$$

Percentage of information

We have $\boldsymbol{C}_{\bullet, 1: k}^{T} \boldsymbol{C}_{\bullet, 1: k}=S_{1: k, 1: k}^{2}=\operatorname{diag}\left(\sigma_{1}^{2}, \cdots, \sigma_{k}^{2}\right)$, thus

$$
\left\|\boldsymbol{C}_{\mathbf{\bullet}, 1: k}\right\|_{F}^{2}=\sum_{j=1}^{k} \sigma_{j}^{2}
$$

and

$$
\frac{\left\|\boldsymbol{C}_{\bullet}, 1: k\right\|_{F}^{2}}{\|\boldsymbol{X}\|_{F}^{2}}=\frac{\sum_{j=1}^{k} \sigma_{j}^{2}}{\sum_{j=1}^{d} \sigma_{j}^{2}} \in[0,1]
$$

Correlations

$$
\widehat{\operatorname{cor}}\left(\boldsymbol{X}_{\bullet, j}, \boldsymbol{C}_{\bullet, k}\right)=\frac{X_{\bullet, j}^{T} \boldsymbol{C}_{\bullet, k}}{\left\|X_{\bullet}, j\right\|\left\|\boldsymbol{C}_{\bullet, k}\right\|}=\cos \left(\widehat{\boldsymbol{X}_{\bullet, j}, \boldsymbol{C}_{\bullet}, k}\right)
$$

Duality

It is easy to show that

- the columns of \boldsymbol{V} are the eigenvector of $\boldsymbol{X}^{T} \boldsymbol{X}$
- the columns of \boldsymbol{U} are the eigenvector of $\boldsymbol{X} \boldsymbol{X}^{T}$

Thus the principal component of $\boldsymbol{X}^{T} \boldsymbol{X}$ are the eigenvectors of $\boldsymbol{X} \boldsymbol{X}^{T}$ and vice-versa

