Introduction
Objective

The factorial methods aim to

* visualize, and more generally,

» handle multidimensional data.

Redundancy
Simultaneously considering many variables is a difficult problem;

Fortunately, the information provided by these variables is often
redundant.

A solution

Replace the initial variables with a reduced number of new
variables without losing too much information.

Principles

For example, when the variables are all quantitative, principal
component analysis (PCA) seeks to solve this problem by

 considering the new variables as linear combinations of the
initial variables

* uncorrelated.

Original table to synthetic table

We move from an original table X to a synthetic table with the
same number of rows but a reduced number of columns C'

History



This method was first developed by K. Pearson (1900) for two
variables, and then by H. Hotelling (1933), who extended it to any
number of variables.
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Maximizing the variance of projected data
The cloud of individuals
The data table X isann X p real matrix:

» each row zc;F = X,e describes an individual with p variables

» each column X7 describes a variable with n individuals

Centering the matrix X

The cloud of individuals is centered around the center of gravity of
the cloud (or vector of empirical means):



ks
—

Without loss of generality, we assume that this mean vector is the
zero vector (it is sufficient to center the original matrix X).

Empirical Variance The empirical variance of the cloud is the sum
of the variances of each variable:

p
A2_§ :,\2
o = O'j

—

J

where 62 = % N Xig?

Relationship between Empirical Variance and Inertia
p
=33 X
i =1

can also be interpreted as the sum of the distances from the
individuals to the center of the cloud.
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Projection of Individuals

Projection onto the wq axis

The vector projection of vector &; onto the vector line with
direction vector wq is defined as

Ci1ui

where ¢;1 =< @®;, w1 > is the coordinate of @; in the w; basis.
Projection onto the vector subspace with basis w1, . .., Uq

The vector projection of vector @; onto the vector subspace with
basisui, ..., uq is defined as the vector

Ci1U1+...TCiqUy

where ¢;x =< @;, wy > is the k-th coordinate of @; in the basis.
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Empirical Covariance Matrix and
Diagonalization

The matrix § = %XtX IS an estimation of the covariance matrix.
It is a symmetric positive definite matrix. Indeed, S = S* and

1
y'Sy y'— D XiXly
1 t t
- Ly wxe
= Z Y X[* >0

Interpretation
The diagonal terms are the empirical variances:

1
532 = — ZXz'f

The off-diagonal terms are the empirical covariances:

1
pjk? = o, ZXinz'k
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Variance Projected onto an Axis

We seek to find v such that the projection of the individuals in X
onto the vector v (vector projection) is maximized:

{max, v'Sv, v'v = 1.
where § = L XX

If we express v in the (orthonormal) basis of the eigenvectors of S,
p
=D
j=1

then the previous problem becomes
{max,,, 0,30 ajug)'UDU(Y] j = 1Paju;), > af =

{maxa,,..a (S 02), ¥, 02

where A is the j-th eigenvalue.
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Solution

The equation gives a barycenter on the half-line of positive real
numbers between Aq and A,. The maximum value of the
barycenter is A1, and it is obtained for &1 = 1 and

aj = 0,V7 # 1 (because all A; are positive). Therefore, the
solution vector is the eigenvector of S associated with the largest
eigenvalue 1. The projection of X; onto w1 is the first principal
component:

Cl p— (Clla . e ,Cnl)t

C =XU
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Reconstruction Formula
_ )t
X = ZCJUJ-

J

The last relationship shows that the initial dataset can be
reconstructed using the principal components and the principal
axes. This relationship is called the reconstruction formula. If we
limit ourselves to the first k (K < p) terms, we obtain an
approximation of the initial dataset.
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Quality of Representation
Overall Quality

The overall quality of representation of the initial set X on the first
k principal components is measured as the percentage of
explained variance:

A+ .o+ A

100.
trace(S) .
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Relative Contribution of an Axis to an Individual

Given that the total inertia of the datasetis + Y% |a;|? the
quantity % |wz\2 represents the portion of inertia contributed by
each a;.

After projection onto the axis ug, the remaining inertia is % (C; )2
. Each of the terms % (Cix)? represents the portion of the initial
inertia =|a;|? contributed by individual 4 and retained by the k-th

axis:




This quantity also represents the square of the cosine of the angle
formed by the individual @&; and the vector wp.

Quality of representation in a subspace

. i Ch & .
QLT (i, k) = HkX 1-H2 * = N"COR(, ).
? —1

(
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Relative Contribution of an Individual to an Axis

Starting from the relationship A, = % S (Cix)? we can
decompose Ag, the inertia preserved by the axis ug, in terms of
individuals.

The portion of inertia accounted for (or explained) by individual ¢
for the k-th axis. We have:

1 C2
CTR(i, k) = — A”‘?.
n Ag
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Interpretation of the New Variables

Correlation Circle

Each original variable has a correlation with the new variables.
These correlations are used to interpret the new variables in terms
of the original ones.

cov(X7, Xuy) o —
V V(X)) V(Xuy) v

cor(X?,C*) = cor(X?, Xuy) =

because

V(Xuy) = u, Suk = Ak (see previous calculation)
cov(X7?, Xup) = L (X7)T Xuy, is the j-th coordinate of

%XTXuk = Apuy. If the variables have been previously
normalized, we obtain

cor(X7, C*) = \/)\kuk
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An example of PCA

The data

This is the table of grades described. Recall that these data group
the grades obtained by nine students in the subjects of
mathematics, science, French, Latin, and drawing:

Grades of 9 students

math scie fran lati d.m

jean 6.0 6.0 50 55 8
aline 80 80 80 8.0 9
annie 6.0 70 11.0 95 11

monique 14.5 14.5 15.5 15.0 8
didier 14.0 140 120 125 10




math scie fran Ilati d.m
andré 11.0 10.0 55 70 13
pierre 55 7.0 140 115 10
brigitte 13.0 125 85 95 12
evelyne 9.0 9.5 125 120 18

Centering the data table

The means of the five variables are respectively 9.67,9.83, 10.22,
10.05, and 11. The column-centered table X is obtained by
subtracting the corresponding mean from each column:

Centered Table
math scie fran lati d.m
jean -3.67 -3.83 -522 -456 -3
aline -1.67 -1.83 -222 -206 -2
annie -3.67/ -2.83 0.78 -0.56 0
monique 4.83 4.6/ 528 494 -3
didier 433 417 178 244 -1




math scie fran lati d.m
andré 1.33 0.17 -4.72 -3.06 2
pierre 417 -2.83 378 1.44 -1
brigitte 3.33 267 -1.72 -0.56
evelyne -0.67 -0.33 228 1.94 7
Variance matrix
]‘ !/

Variance Matrix

math scie fran lati d.m
math 11.39 992 266 4.82 0.11
scie 992 894 412 548 0.06
fran 266 412 12.06 9.29 0.39
lati 482 548 9.29 791 0.67
d.m 0.11 0.06 0.39 0.6/ 8.67
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Principal axes of inertia

The diagonalization of the variance matrix provides the following

eigenvalues (arranged in descending order):

A1 = 28.2533, Ay = 12.0747, A3 = 8.6157, A4 = 0.0217, As

and the normalized eigenvectors or principal axes of inertia:

V1 =

(0.51\

0.51
0.49

0.48
\0.03

/—0.57\

—0.37
0.65

\ 0:11)

Quality of representation

/—0.05\

—0.01
0.11

\—0:99 )
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» The inertias of the cloud projected onto the 5 axes are equal to
the sum of the eigenvalues.

 The inertia of the cloud is equal to trace(S), which is also the

sum of the eigenvalues, here 48.975.

» The percentages of inertia explained by each axis are therefore
57.69, 24.65,17.59,0.04, and 0.02.

» The percentages of inertia explained by the principal subspaces
are 57.69, 82.34,99.94, 99 .98, and 100.00.

» The initial cloud is practically in a 3-dimensional space.
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Principal components C = XV

Composantes principales
jean 870 1.70 255 -0.15 -0.12
aline 394 0.71 1.81 -0.09 0.04
annie 3.21 -3.46 030 0.17 0.02
monique -9.76 -0.22 3.34 -0.17 0.10
didier -6.37 217 096 0.07 -0.19
andré 297 465 -263 -0.02 0.15
pierre 1.05 -6.23 1.69 0.12 0.04
brigitte -1.98 4.07 -1.40 0.24 0.01
evelyne -1.77 -3.40 -6.62 -0.16 -0.06

Relative contributions of axes to individuals

Relative contributions of axes to
individuals

jean 0.89 0.03 0.08
aline 0.80 0.03 0.17
annie 0.46 0.53 0.00
monique 0.89 0.00 0.11
didier 0.88 0.10 0.02
andré 0.24 0.58 0.19
pierre 0.03 0.91 0.07
brigitte  0.17 0.74 0.09

O OO 0O 0o 0o O O] O
O 0O 0O 0|0 O O] o




Relative contributions of individuals to axes

Relative contributions of individuals to axes
jean 0.30 0.03 0.08 0.11 0.15
aline 0.06 0.00 0.04 0.04 0.02
annie 0.04 0.11 0.00 0.15 0.00
monique 0.37 0.00 0.14 0.15 0.11
didier 0.16 0.04 0.01 0.03 0.40
andré 0.03 0.20 0.09 0.00 0.25
pierre 0.00 0.36 0.04 0.07 0.02
brigitte  0.02 0.15 0.03 0.30 0.00
evelyne 0.01 0.11 0.56 0.14 0.04

Analysis in R"

The vectors d®, which are the principal components associated
with the different variables, are formed by the coordinates of all the
variables for the same axis v, and they satisfy the relation

d® = \/ AV,

We obtain
Variables
-2.73 1.97 -0.15 -0.04 0.06
-2.69 1.29 -0.04 0.08 -0.05
-2.62 -2.26 032 0.06 0.04




-2.58 -1.12 0.07 -0.10 -0.05
-0.16 -0.39 -291 0.01 0.00

Analysis in R"

It is often preferable to represent the projection of the standardized
original variables. To do this, simply divide each row of the
previous table by the norm of the corresponding variable

. 1 O .
27| = 5 > _(=)*

1=1

The ||| actually correspond to the standard deviations of the
variables. We obtain 3.37,2.99, 3.47,2.81, and 2.94, respectively. ::
{cell} ::: { cell-output-display} Table: Normalized Variables

-0.81 0.58 -0.04 -0.01 0.02
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-0.90 0.43

-0.01 0.03

-0.02

-0.75 -0.65

0.09 0.02

0.01

-0.92 -0.40

0.02 -0.04

-0.02

-0.06 -0.13

PCA with FactoMineR

-0.99 0.00

0.00
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Explained Variances
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Representation of Individuals
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Representation of Variables

PCA graph of variables
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Relative contributions of axes to individuals

Relative contributions of axes to individuals
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

jean 0.89 0.03 0.08 0 0
aline 0.80 0.03 0.17 0 0
annie 046 0.53 0.00 0 0
monique 0.89 0.00 0.11 0 0
didier 0.88 0.10 0.02 0 0
andré 0.24 0.58 0.19 0 0
pierre 0.03 0.91 0.07 0 0
brigitte 0.17 0.74 0.09 0 0




Relative contributions of axes to individuals

Individuals - PCA

pierre 1
o 1
5.0
annie ! evelyne
o °
25 ! cos2
1
3 :
. 1 0.8
N - .
~ ! monique 06
E 00 -mmmmm e e . < ol __
a aline 1
i 1 0.4
. 1
jean 1
° ' didier
! °
25
brigitte
. L]
andré
L]
5.0
-5 0 5 10

Dim1 (57.7%)

56

Contributions of individuals to axes

Contributions of individuals to axes
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
math 26.47 32.14 026 834 32.78
scie 2570 13.84 0.02 30.59 29.85
fran 2424 4230 1.17 1550 16.79
lati 23.49 10.45 0.05 4545 20.56
d.m 0.09 1.27 9850 0.12 0.02
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Contributions of individuals to axes

Contribution of individuals to Dim-1

Contributions (%)
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