
Introduction
Objective

The factorial methods aim to

visualize, and more generally,

handle multidimensional data.

Redundancy

Simultaneously considering many variables is a di�cult problem;

Fortunately, the information provided by these variables is often
redundant.
A solution

Replace the initial variables with a reduced number of new
variables without losing too much information.
Principles

For example, when the variables are all quantitative, principal
component analysis (PCA) seeks to solve this problem by

considering the new variables as linear combinations of the
initial variables

uncorrelated.

Original table to synthetic table

We move from an original table  to a synthetic table with the
same number of rows but a reduced number of columns .
History



This method was �rst developed by K. Pearson (1900) for two
variables, and then by H. Hotelling (1933), who extended it to any
number of variables.
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Maximizing the variance of projected data
The cloud of individuals

The data table  is an  real matrix:

each row  describes an individual with  variables

each column  describes a variable with  individuals

Centering the matrix 

The cloud of individuals is centered around the center of gravity of
the cloud (or vector of empirical means):



Without loss of generality, we assume that this mean vector is the
zero vector (it is su�cient to center the original matrix ).

Empirical Variance The empirical variance of the cloud is the sum
of the variances of each variable:

where 

Relationship between Empirical Variance and Inertia

can also be interpreted as the sum of the distances from the
individuals to the center of the cloud.
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Projection of Individuals
Projection onto the  axis

The vector projection of vector  onto the vector line with
direction vector  is de�ned as

where  is the coordinate of  in the  basis.
Projection onto the vector subspace with basis 

The vector projection of vector  onto the vector subspace with
basis  is de�ned as the vector

where  is the -th coordinate of  in the basis.
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Empirical Covariance Matrix and
Diagonalization

The matrix  is an estimation of the covariance matrix.
It is a symmetric positive de�nite matrix. Indeed,  and

Interpretation
The diagonal terms are the empirical variances:

The off-diagonal terms are the empirical covariances:
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Variance Projected onto an Axis

We seek to �nd  such that the projection of the individuals in 
onto the vector  (vector projection) is maximized:

where .

If we express  in the (orthonormal) basis of the eigenvectors of ,

then the previous problem becomes

where  is the -th eigenvalue.

32



Solution

The equation gives a barycenter on the half-line of positive real
numbers between  and . The maximum value of the
barycenter is , and it is obtained for  and

 (because all  are positive). Therefore, the
solution vector is the eigenvector of  associated with the largest
eigenvalue . The projection of  onto  is the �rst principal
component:
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Reconstruction Formula

The last relationship shows that the initial dataset can be
reconstructed using the principal components and the principal
axes. This relationship is called the reconstruction formula. If we
limit ourselves to the �rst   terms, we obtain an
approximation of the initial dataset.
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Quality of Representation
Overall Quality

The overall quality of representation of the initial set  on the �rst
 principal components is measured as the percentage of

explained variance:
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Relative Contribution of an Axis to an Individual

Given that the total inertia of the dataset is , the
quantity  represents the portion of inertia contributed by
each .

After projection onto the axis , the remaining inertia is 
. Each of the terms  represents the portion of the initial
inertia  contributed by individual  and retained by the -th
axis:



This quantity also represents the square of the cosine of the angle
formed by the individual  and the vector .
Quality of representation in a subspace
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Relative Contribution of an Individual to an Axis

Starting from the relationship , we can
decompose , the inertia preserved by the axis , in terms of
individuals.

The portion of inertia accounted for (or explained) by individual 
for the -th axis. We have:
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Interpretation of the New Variables
Correlation Circle

Each original variable has a correlation with the new variables.
These correlations are used to interpret the new variables in terms
of the original ones.

because

 (see previous calculation)
 is the j-th coordinate of

. If the variables have been previously
normalized, we obtain
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An example of PCA
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The data

This is the table of grades described. Recall that these data group
the grades obtained by nine students in the subjects of
mathematics, science, French, Latin, and drawing:

Grades of 9 students

math scie fran lati d.m

jean 6.0 6.0 5.0 5.5 8

aline 8.0 8.0 8.0 8.0 9

annie 6.0 7.0 11.0 9.5 11

monique 14.5 14.5 15.5 15.0 8

didier 14.0 14.0 12.0 12.5 10



math scie fran lati d.m

andré 11.0 10.0 5.5 7.0 13

pierre 5.5 7.0 14.0 11.5 10

brigitte 13.0 12.5 8.5 9.5 12

evelyne 9.0 9.5 12.5 12.0 18
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Centering the data table

The means of the �ve variables are respectively 9.67, 9.83, 10.22,
10.05, and 11. The column-centered table  is obtained by
subtracting the corresponding mean from each column:

Centered Table

math scie fran lati d.m

jean -3.67 -3.83 -5.22 -4.56 -3

aline -1.67 -1.83 -2.22 -2.06 -2

annie -3.67 -2.83 0.78 -0.56 0

monique 4.83 4.67 5.28 4.94 -3

didier 4.33 4.17 1.78 2.44 -1



math scie fran lati d.m

andré 1.33 0.17 -4.72 -3.06 2

pierre -4.17 -2.83 3.78 1.44 -1

brigitte 3.33 2.67 -1.72 -0.56 1

evelyne -0.67 -0.33 2.28 1.94 7
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Variance matrix

Variance Matrix

math scie fran lati d.m

math 11.39 9.92 2.66 4.82 0.11

scie 9.92 8.94 4.12 5.48 0.06

fran 2.66 4.12 12.06 9.29 0.39

lati 4.82 5.48 9.29 7.91 0.67

d.m 0.11 0.06 0.39 0.67 8.67
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Principal axes of inertia

The diagonalization of the variance matrix provides the following
eigenvalues (arranged in descending order):

and the normalized eigenvectors or principal axes of inertia:
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Quality of representation
The inertias of the cloud projected onto the 5 axes are equal to
the sum of the eigenvalues.

The inertia of the cloud is equal to trace(S), which is also the
sum of the eigenvalues, here 48.975.

The percentages of inertia explained by each axis are therefore
57.69, 24.65, 17.59, 0.04, and 0.02.

The percentages of inertia explained by the principal subspaces
are 57.69, 82.34, 99.94, 99.98, and 100.00.

The initial cloud is practically in a 3-dimensional space.
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Principal components 
Composantes principales

jean 8.70 1.70 2.55 -0.15 -0.12

aline 3.94 0.71 1.81 -0.09 0.04

annie 3.21 -3.46 0.30 0.17 0.02

monique -9.76 -0.22 3.34 -0.17 0.10

didier -6.37 2.17 0.96 0.07 -0.19

andré 2.97 4.65 -2.63 -0.02 0.15

pierre 1.05 -6.23 1.69 0.12 0.04

brigitte -1.98 4.07 -1.40 0.24 0.01

evelyne -1.77 -3.40 -6.62 -0.16 -0.06
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Relative contributions of axes to individuals
Relative contributions of axes to

individuals

jean 0.89 0.03 0.08 0 0

aline 0.80 0.03 0.17 0 0

annie 0.46 0.53 0.00 0 0

monique 0.89 0.00 0.11 0 0

didier 0.88 0.10 0.02 0 0

andré 0.24 0.58 0.19 0 0

pierre 0.03 0.91 0.07 0 0

brigitte 0.17 0.74 0.09 0 0
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Relative contributions of individuals to axes
Relative contributions of individuals to axes

jean 0.30 0.03 0.08 0.11 0.15

aline 0.06 0.00 0.04 0.04 0.02

annie 0.04 0.11 0.00 0.15 0.00

monique 0.37 0.00 0.14 0.15 0.11

didier 0.16 0.04 0.01 0.03 0.40

andré 0.03 0.20 0.09 0.00 0.25

pierre 0.00 0.36 0.04 0.07 0.02

brigitte 0.02 0.15 0.03 0.30 0.00

evelyne 0.01 0.11 0.56 0.14 0.04
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Analysis in 

The vectors , which are the principal components associated
with the different variables, are formed by the coordinates of all the
variables for the same axis , and they satisfy the relation

We obtain

Variables

-2.73 1.97 -0.15 -0.04 0.06

-2.69 1.29 -0.04 0.08 -0.05

-2.62 -2.26 0.32 0.06 0.04



-2.58 -1.12 0.07 -0.10 -0.05

-0.16 -0.39 -2.91 0.01 0.00
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Analysis in 

It is often preferable to represent the projection of the standardized
original variables. To do this, simply divide each row of the
previous table by the norm of the corresponding variable

The  actually correspond to the standard deviations of the
variables. We obtain 3.37, 2.99, 3.47, 2.81, and 2.94, respectively. :::
{.cell} ::: {.cell-output-display} Table: Normalized Variables

-0.81 0.58 -0.04 -0.01 0.02



-0.90 0.43 -0.01 0.03 -0.02

-0.75 -0.65 0.09 0.02 0.01

-0.92 -0.40 0.02 -0.04 -0.02

-0.06 -0.13 -0.99 0.00 0.00

::: :::
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PCA with FactoMineR
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Explained Variances
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Representation of Individuals
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Representation of Variables
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Relative contributions of axes to individuals
Relative contributions of axes to individuals

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

jean 0.89 0.03 0.08 0 0

aline 0.80 0.03 0.17 0 0

annie 0.46 0.53 0.00 0 0

monique 0.89 0.00 0.11 0 0

didier 0.88 0.10 0.02 0 0

andré 0.24 0.58 0.19 0 0

pierre 0.03 0.91 0.07 0 0

brigitte 0.17 0.74 0.09 0 0
55



Relative contributions of axes to individuals
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Contributions of individuals to axes
Contributions of individuals to axes

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

math 26.47 32.14 0.26 8.34 32.78

scie 25.70 13.84 0.02 30.59 29.85

fran 24.24 42.30 1.17 15.50 16.79

lati 23.49 10.45 0.05 45.45 20.56

d.m 0.09 1.27 98.50 0.12 0.02
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Contributions of individuals to axes
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