Model selection

Model selection: How many clusters ?

The number of clusters K controls the model complexity.

Choosing K is an example of model selection.

The optimal Bayesian approach is to pick the model with the largest marginal likelihood,

$$K^* = rg\max_k p(\mathcal{D}|K).$$

In practice,

- 1. Simple approximations, such as BIC, ICL can be used.
- 2. We can use the cross-validated likelihood as a performance measure
- 3. An alternative approach is to perform stochastic sampling in the space of models (MCMC)

The Laplace approximation

Taylor expansion

For functions of multiple variables $f(oldsymbol{z})=f(z_1,z_2,\cdots,z_p)$.

$$\log f(oldsymbol{z}) pprox \log f(oldsymbol{z}_0) +
abla \log f(oldsymbol{z}_0)^T (oldsymbol{z} - oldsymbol{z}_0) + rac{1}{2} (oldsymbol{z} - oldsymbol{z}_0)^T$$

where A is the Hessian matrix of second derivatives of $\log f(z)$ at $z = z_0$.

The Laplace approximation

Gaussian approximation to a probability density defined over a set of continuous variables.

Considering the density

$$p(oldsymbol{z}) = rac{1}{Z} f(oldsymbol{z})$$

The normalizing constant is

$$egin{aligned} Z &= \int f(oldsymbol{z}) doldsymbol{z} \ &= f(oldsymbol{z}_0) \int \exp{-rac{1}{2}} (oldsymbol{z}_- oldsymbol{z}_0)^T A(oldsymbol{z}_- oldsymbol{z}_0) doldsymbol{z} \ &pprox f(oldsymbol{z}_0) rac{(2\pi)^{p/2}}{|A|^{1/2}} \end{aligned}$$

where $m{z}_0$ is a mode of the distribution (where $abla \log f(m{z}_0) = m{0})$

BIC

From the Bayes theorem the model evidence is

$$p(\mathcal{D}) = \int p(oldsymbol{ heta}) p(D|oldsymbol{ heta}) doldsymbol{ heta}$$

Using Laplace approximation in for $f(m{ heta}) = p(m{ heta}) p(D|m{ heta})$ in $m{ heta} = m{ heta}_{MAP}$:

$$\log p(\mathcal{D}) \approx \log p(\mathcal{D}|\boldsymbol{\theta}_{MAP}) + \underbrace{\log p(\boldsymbol{\theta}_{MAP}) + \frac{p}{2} \log(2\pi) - \frac{1}{2}}_{Occam factor}$$

- $\log p(\mathcal{D}|oldsymbol{ heta}_{MAP})$ represents the log-likelihood
- the Occam factor penalizes the model complexity

Assuming a simple Gaussian prior distribution over parameters, with full rank Hessian we can further approximate the Hessian matrix by the fisher information and we get

$$\log p(\mathcal{D}) pprox \log p(\mathcal{D}|oldsymbol{ heta}_{MAP}) - rac{1}{2}p\log n$$

which is known a the BIC (Bayesian Information Criterion) or the Schwartz criterion (1978).

BIC for chosing the number of clusters

$$K_{BIC} = rg\max_k \log p(\mathcal{D}|oldsymbol{ heta}_{MAP}^k) - rac{1}{2}p_k\log n$$

where p_k is the number of parameters of the model with k clusters and θ^k_{MAP} the MAP estimate of the model

Integrated Complete Likelihood (ICL)

$$egin{aligned} BIC(k) &= p(\mathcal{D}|oldsymbol{ heta}_{MAP}^k) - rac{1}{2}p_k\log n \ &= \mathbb{E}_{Z|X;oldsymbol{ heta}_{MAP}^k}[\log p(X,Z;oldsymbol{ heta}_{MAP}^k)] - \mathbb{E}_{Z|X;oldsymbol{ heta}_{MAP}^k}[\log p(X,Z;oldsymbol{ heta}_{MAP}^k)] + \mathbb{E}_{Z|X;$$

Biernacki et al. (2000) proposed to favour clustering with highconfidence (low entropy) by removing entropy term to BIC. *ICL for chosing the number of clusters*

$$K_{ICL} = rg\max_k \log \mathbb{E}_{Z|X; oldsymbol{ heta}_{MAP}}[\log p(X,Z;oldsymbol{ heta}_{MAP})] - rac{1}{2}p_k ext{l}$$

19

Akaike information criterion

Using information theory Akaike (1974) derived an alternative criterion:

AIC

$$K_{AIC} = rg\max_k \log p(\mathcal{D}|oldsymbol{ heta}_k) - p_k$$

Penalized Likelihood criteria

Generally AIC chooses more complex models than BIC which chooses more complex models than ICL

$$K_{AIC} \ge K_{BIC} \ge K_{ICL}$$

Multivariate Gaussian Mixture models

Assumes K classes in proportion π_1, \ldots, π_K with component densities

$$oldsymbol{x}_i | z_i = k \sim \mathcal{N}_p(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$

- $oldsymbol{\mu}_k \in \mathbb{R}^p$
- $\mathbf{\Sigma}_k \in \mathbb{R}^{p imes p}$

Number of parameters

$$p_k = p. K + p(p-1)/2 + K - 1$$

Covariance matrix parametrization

Table 1: Parameterizations of the covariance matrix Σ_k currently available in mclust for hierarchical clustering (HC) and/or EM for multidimensional data. ('•' indicates availability).

identifier	Model	HC	EM	Distribution	Volume	Shape	Orientation
E		•	•	(univariate)	equal		
v		•	•	(univariate)	variable		
EII	λI	•	•	Spherical	equal	equal	NA
VII	$\lambda_k \ \mathrm{I}$	•	•	Spherical	variable	equal	NA
EEI	λA		•	Diagonal	equal	equal	coordinate axes
VEI	$\lambda_k A$		•	Diagonal	variable	\mathbf{equal}	coordinate axes
EVI	λA_k		•	Diagonal	equal	variable	coordinate axes
VVI	$\lambda_k A_k$		•	Diagonal	variable	variable	coordinate axes
EEE	λDAD^T	•	•	Ellipsoidal	equal	equal	equal
EEV	$\lambda D_k A D_k^T$		•	Ellipsoidal	equal	equal	variable
VEV	$\lambda_k D_k A D_k^T$		•	Ellipsoidal	variable	equal	variable
VVV	$\lambda_k D_k A_k D_k^T$	•	•	Ellipsoidal	variable	variable	variable

Relation to kmeans algorithm

Complete (Classification) log-likelihood

$$egin{aligned} CL(oldsymbol{ heta};X,Z) &= \log \prod_i p(x_i,z_i=k;oldsymbol{ heta}_k) \ &= \log \prod_i \prod_k p(x_i,z_i=k;oldsymbol{ heta}_k)^{\mathbb{I}(z_i=k)} \ &= \sum_i \sum_k \mathbb{I}(z_i=k) \log p(x_i,z_i=k;oldsymbol{ heta}_k) \end{aligned}$$

CEM algorithm

 $CL(oldsymbol{ heta};X,Z)$ can be maximized using CEM algorithm