Model selection

Model selection: How many clusters ?
The number of clusters K controls the model complexity.
Choosing K is an example of model selection.

The optimal Bayesian approach is to pick the model with the
largest marginal likelihood,

K* = arg ml?xp(D\K).

In practice,



1. Simple approximations, such as BIC, ICL can be used.

2. We can use the cross-validated likelihood as a performance
measure

3. An alternative approach is to perform stochastic sampling in
the space of models (MCMC)
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The Laplace approximation
Taylor expansion

For functions of multiple variables f(z) = f(z1, 22, -, 2p).

1

log f(z) ~ log f(z0) + Vlog f(20)" (z — 20) + 5 (2 — 20)’

where A is the Hessian matrix of second derivatives of log f(2)
at z = 2.
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The Laplace approximation

Gaussian approximation to a probability density defined over a set of
continuous variables.

Considering the density

The normalizing constant is

where 2 is a mode of the distribution (where V log f(z¢) = 0)
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BIC
From the Bayes theorem the model evidence is
»(D) = [ p(6)p(DI6)do

Using Laplace approximation in for f(8) = p(0)p(D|@) in
0 = Oyap:

log p(D) ~ log p(D|Orap) + logp(Orrap) + %log(27r) -

A\

1

NG

TV
Occam factor

» log p(D|O s 4p) represents the log-likelihood

» the Occam factor penalizes the model complexity

Assuming a simple Gaussian prior distribution over parameters,
with full rank Hessian we can further approximate the Hessian
matrix by the fisher information and we get

1
log p(D) ~ log p(D|Orap) — Eplogn

which is known a the BIC (Bayesian Information Criterion) or the
Schwartz criterion (1978).

BIC for chosing the number of clusters



1
K prc = argmax log p(D|0%,4p) — o Pk logn

where py, is the number of parameters of the model with k clusters
and 9?\4,413 the MAP estimate of the model
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Integrated Complete Likelihood (ICL)

1
BIC(k) = P(D‘Hlf\mp) 5Pk logn

= EZ\X;H’“ log p(X, Z; elfwAP)] - ]EZ|X;0’“ log p

MAP MAP

Biernacki et al. (2000) proposed to favour clustering with high-
confidence (low entropy) by removing entropy term to BIC.

ICL for chosing the number of clusters

1
Krop = argmaxlogll 7 y.g log p(X, Z; 91?\41413)] - Epkl

k MAP
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Akaike information criterion

Using information theory Akaike (1974) derived an alternative
criterion:

AlIC

K g10 = arg max log p(D|0}) — i
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Penalized Likelihood criteria

Generally AIC chooses more complex models than BIC which
chooses more complex models than ICL

Karc > Kpie 2 Kot
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Multivariate Gaussian Mixture models

Assumes K classes in proportion 7y, . . . , T With component
densities

zi|2i = k ~ Np(pr, Zi)

« pp € RP
o X € RPXP

Number of parameters

pr=p.K+plp—1)/2+ K -1

Covariance matrix parametrization

Table 1: Parameterizations of the covariance matrix ¥ currently available in mclust for hierarchical clus-
tering (HC) and/or EM for multidimensional data. (‘e’ indicates availability).

identifier Model HC | EM | Distribution | Volume Shape Orientation
E . e | (univariate) | equal

v . e | (univariate) | variable

EII A ° . Spherical equal equal NA

VII V| ° ° Spherical | variable  equal NA

EEI AA ° Diagonal equal equal  coordinate axes
VEI ALA . Diagonal | variable equal coordinate axes
EVI AAy ) Diagonal equal  variable coordinate axes
VVI M Ak ° Diagonal variable variable coordinate axes
EEE ADADT ° ° Ellipsoidal equal equal equal

EEV )\DkADZ ° Ellipsoidal equal equal variable
VEV A Dy ADY o Ellipsoidal | variable  equal variable
VVV /\kaAkDg ° ° Ellipsoidal | variable variable variable




Relation to kmeans algorithm
Complete (Classification) log-likelihood

CL(6; X, Z) = long x;, z; = k;0y)

logHprz,zz—kH ( k)
= ZZH k)logp(zi, 2 = k; 6))

CEM algorithm

CL(0; X, Z) can be maximized using CEM algorithm

Principal Component

Analysis




