
Année 2022 ANALYSE DE DONNÉES - MAD - ENSIIE

Le projet sera rendu sous la forme d’un fichier Rmd et de sa version compilée en pdf
envoyés à l’adresse christophe.ambroise@univ-evry.fr.

Variantes des k-means pour une accélération et une
meilleure convergence

Exercise 1 L’algorithme des kmeans++

1. Programmer l’algorithme décrit dans la section 2.2 de l’article scientifique joint
au sujet.

2. Simuler des données NORM-10 et NORM-25 suivant le protocole décrit par la
section 6.1

3. Comparer votre algorithme au kmeans classique en vous inspirant du tableau
1 sur les jeux de données simulées.

Exercise 2 Données iris

1. Appliquer votre algorithme au jeu de données iris et comparer aux k-means
et à l’algorithme mclust.

2. Visualiser les différentes partitions sur les premiers plans d’une analyse en com-
posantes principale.

3. Commentez.

1

k-means++: The Advantages of Careful Seeding

David Arthur and Sergei Vassilvitskii

Abstract

The k-meansmethod is a widely used clustering technique that seeks to minimize the average
squared distance between points in the same cluster. Although it offers no accuracy guarantees,
its simplicity and speed are very appealing in practice. By augmenting k-means with a simple,
randomized seeding technique, we obtain an algorithm that is O(log k)-competitive with the
optimal clustering. Experiments show our augmentation improves both the speed and the
accuracy of k-means, often quite dramatically.

1 Introduction

The k-means clustering problem is one of the oldest and most important questions in all of com-
putational geometry. Given an integer k and a set of n data points in Rd, the goal is to choose k
centers so as to minimize φ, the total squared distance between each point and its closest center.

Solving this problem exactly is NP-hard, but twenty-five years ago, Lloyd [11] proposed a
local search solution to this problem that is still very widely used today (see for example [1, 5, 8]).
Indeed, a 2002 survey of data mining techniques states that it “is by far the most popular clustering
algorithm used in scientific and industrial applications” [3].

Usually referred to simply as “k-means,” Lloyd’s algorithm begins with k arbitrary “centers,”
typically chosen uniformly at random from the data points. Each point is then assigned to the
nearest center, and each center is recomputed as the center of mass of all points assigned to it.
These last two steps are repeated until the process stabilizes. One can check that φ is monotonically
decreasing, which ensures that no configuration is repeated during the course of the algorithm. Since
there are only kn possible clusterings, the process will always terminate.

It is the speed and simplicity of the k-means method that make it appealing, not its accuracy.
Indeed, there are many natural examples for which the algorithm generates arbitrarily bad cluster-
ings (i.e., φ

φOPT
is unbounded even when n and k are fixed). This does not rely on an adversarial

placement of the starting centers, and in particular, it can hold with high probability even if the
centers are chosen uniformly at random from the data points.

Surprisingly, however, no work seems to have been done on other possible ways of choosing the
starting centers. We propose a variant that chooses centers at random from the data points, but
weighs the data points according to their squared distance squared from the closest center already
chosen. Letting φ denote the potential after choosing centers in this way, we show the following.

Theorem 1.1. For any set of data points, E[φ] ≤ 8(ln k + 2)φOPT .

Choosing centers in this way is both fast and simple, and it already achieves guarantees that
k-means cannot. We propose using this technique to seed the initial centers for k-means, leading
to a combined algorithm we call k-means++.

1

2

To complement our theoretical bounds, we also provide experiments to show that k-means++
generally outperforms k-means in terms of both accuracy and speed, often by a substantial margin.

1.1 Related Work

There have been a number of recent papers that describe O(1 + ε)-competitive algorithms for the
k-means problem that are essentially unrelated to Lloyd’s method [4, 6, 10, 12]. These algorithms
are all highly exponential in k, however, and are not at all viable in practice.

Kanungo et al. [9] recently proposed an O(n3ε−d) algorithm for the k-means problem that is
(9+ ε)-competitive. Unfortunately, even this is too slow in practice, especially since k-means seems
to be depend almost linearly on n in practice. Kanungo et al. also discuss a way to use their ideas
to tweak k-meansto make it practicable, but this approach loses all accuracy guarantees.

Although it is not directly relevant, we also note there has been renewed interest in quantifying
the running time of the k-means algorithm [2, 7].

2 Definitions

In this section, we formally define the k-means problem, as well as the k-means and k-means++

algorithms.
For the k-means problem, we are given an integer k and a set of n data points X ⊂ Rd. We

wish to choose k centers C so as to minimize the potential function,

φ =
∑

x∈X
min
c∈C

‖x− c‖2.

From these centers, we can define a clustering by grouping data points according to which center
each point is assigned to. As noted above, finding an exact solution to this problem is NP-hard.

Throughout the paper, we will let COPT denote the optimal clustering and φOPT the corre-
sponding potential. Given a clustering C with potential φ, we also let φ(A) denote the contribution
of A ⊂ X to the potential (i.e., φ(A) =

∑
a∈Aminc∈C‖x− c‖2).

2.1 The k-means algorithm

The k-means algorithm is a simple and fast algorithm for this problem, although it offers no
approximation guarantees at all.

1. Arbitrarily choose an initial k centers C = {c1, c2, · · · , ck}.
2. For each i ∈ {1, . . . , k}, set the cluster Ci to be the set of points in X that are closer to ci

than they are to cj for all j 6= i.

3. For each i ∈ {1, . . . , k}, set ci to be the center of mass of all points in Ci: ci =
1

|Ci|
∑

x∈Ci
x.

4. Repeat Steps 2 and 3 until C no longer changes.

It is standard practice to choose the initial centers uniformly at random from X . For Step 2, ties
may be broken arbitrarily, as long as the method is consistent.

The idea here is that Steps 2 and 3 are both guaranteed to decrease φ, so the algorithm makes
local improvements to an arbitrary clustering until it is no longer possible to do so. To see Step 3
decreases φ, it is helpful to recall a standard result from linear algebra (see for example [2]).

2

3

Lemma 2.1. Let S be a set of points with center of mass c(S), and let z be an arbitrary point.
Then,

∑
x∈S‖x− z‖2 −∑x∈S‖x− c(S)‖2 = |S| · ‖c(S)− z‖2.

2.2 The k-means++ algorithm

We propose a specific way of choosing centers for the k-means algorithm. In particular, let D(x)
denote the shortest distance from a data point to the closest center we have already chosen. Then,
we define the following algorithm, which we call k-means++.

1a. Take one center c1, chosen uniformly at random from X .

1b. Take a new center ci, choosing x ∈ X with probability D(x)2P
x∈X D(x)2

.

1c. Repeat Step 1b. until we have taken k centers altogether.

2-4. Proceed as with the standard k-means algorithm.

We call the weighting used in Step 1b simply “D2 weighting”.

3 k-means++ is O(log k)-Competitive

In this section, we show the following theorem.

Theorem 3.1. If C is constructed with k-means++, then the corresponding potential function φ
satisfies, E[φ] ≤ 8(ln k + 2)φOPT.

In fact, we prove this holds after only Step 1 of the algorithm above. As noted above, Steps 2-4
can only decrease φ.

Our analysis consists of two parts. First, we show that k-means++ is competitive in those
clusters of COPT from which it chooses a center. This is easiest in the case of our first center, which
is chosen uniformly at random.

Lemma 3.2. Let A be an arbitrary cluster in COPT, and let C be the clustering with just one center,
which is chosen uniformly at random from A. Then, E[φ(A)] = 2φOPT(A).

Proof. Let c(A) denote the center of mass of A. By Lemma 2.1, we know that since COPT is optimal,
c(A) must be the center corresponding to the cluster A. By the same Lemma, we also have,

E[φ(A)] =
1

|A|
∑

a0∈A

∑

a∈A
‖a− a0‖2

=
1

|A|
∑

a0∈A

(∑

a∈A
‖a− c(A)‖2 + |A| · ‖a0 − c(A)‖2

)

= 2
∑

a∈A
‖a− c(A)‖2,

and the result follows.

Our next step is to prove an analog of Lemma 3.2 for the remaining centers, which are chosen
with D2 weighting.

3

4

Lemma 3.3. Let A be an arbitrary cluster in COPT, and let C be an arbitrary clustering. If we add
a random center to C from A, chosen with D2 weighting, then E[φ(A)] ≤ 8φOPT(A).

Proof. The probability we choose some fixed a0 as our center, given that we are choosing something

from A, is precisely D(a0)2P
a∈A D(a)2

. Furthermore, after choosing the center a0, a point a will contribute

precisely min(D(a), ‖a− a0‖)2 to the potential. Therefore,

E[φ(A)] =
∑

a0∈A

D(a0)
2

∑
a∈AD(a)2

∑

a∈A
min(D(a), ‖a− a0‖)2.

Note by the triangle inequality that D(a0) ≤ D(a) + ‖a − a0‖ for all a, a0. By the power-
mean inequality1, we then have D(a0)

2 ≤ 2D(a)2 + 2‖a − a0‖2. Summing over a, this implies
D(a0) ≤ 2

|A|
∑

a∈AD(a)2 + 2
|A|
∑

a∈A‖a− a0‖2, and hence,

E[φ(A)] ≤ 2

|A| ·
∑

a0∈A

∑
a∈AD(a)2∑
a∈AD(a)2

·
∑

a∈A
min(D(a), ‖a− a0‖)2) +

2

|A| ·
∑

a0∈A

∑
a∈A‖a− a0‖2∑
a∈AD(a)2

·
∑

a∈A
min(D(a), ‖a− a0‖)2).

In the first expression, we substitute min(D(a), ‖a−a0‖)2) ≤ ‖a−a0‖2, and in the second expression,
we substitute min(D(a), ‖a− a0‖)2) ≤ D(a)2. Simplifying, we then have,

E[φ(A)] ≤ 4

|A| ·
∑

a0∈A

∑

a∈A
‖a− a0‖2

= 8φOPT(A).

The last step here follows from Lemma 3.2.

We have now shown that our seeding technique is competitive as long as it chooses centers from
each cluster of COPT, which completes the first half of our argument. We now use induction to
show the total error in general is at most O(log k).

Lemma 3.4. Let C be an arbitrary clustering. Choose u > 0 “uncovered” clusters from COPT, and
let Xu denote the set of points in these clusters. Also let Xc = X −Xu. Now suppose we add t ≤ u
random centers to C, chosen with D2 weighting. Let C′ denote the the resulting clustering, and let
φ′ denote the corresponding potential. Then,

E[φ′] ≤
(
φ(Xc) + 8φOPT(Xu)

)
· (1 +Ht) +

u− t

u
· φ(Xu).

Here, Ht denotes the harmonic sum, 1 + 1
2 + · · ·+ 1

t .

Proof. We prove this by induction, showing that if the result holds for (t− 1, u) and (t− 1, u− 1),
then it also holds for (t, u). Therefore, it suffices to check t = 0, u > 0 and t = u = 1 as our base
cases.

1The power-mean inequality states for any real numbers a1, · · · , am that Σa2
i ≥ 1

m
(Σai)

2. It follows from Cauchy-
Schwarz inequality and we will need the general form for Lemma 3.4.

4

5

If t = 0 and u > 0, the result follows from the fact that 1 + Ht = u−t
u = 1. Next, suppose

t = u = 1. We choose a new center from the one uncovered cluster with probability exactly φ(Xu)
φ .

In this case, Lemma 3.3 guarantees that E[φ′] ≤ φ(Xc)+8φOPT(Xu). Since φ
′ ≤ φ even if we choose

a center from a covered cluster, we have

E[φ′] ≤ φ(Xu)

φ
·
(
φ(Xc) + 8φOPT(Xu)

)
+

φ(Xc)

φ
· φ

≤ 2φ(Xc) + 8φOPT(Xu).

Since 1 +Ht = 2 here, we have shown the result holds for both base cases.
We now proceed to prove the inductive step. It is convenient here to consider two cases. First

suppose our first center comes from a covered cluster. As above, this happens with probability
exactly φ(Xc)

φ . Note that this new center can only decrease φ. Bearing this in mind, apply the
inductive hypothesis with the same choice of covered clusters, but with t decreased by one. It
follows that our contribution to E[φ′] in this case is at most

φ(Xc)

φ
·
((

φ(Xc) + 8φOPT(Xu)
)
· (1 +Ht−1) +

u− t+ 1

u
· φ(Xu)

)
. (1)

On the other hand, suppose our first center comes from some uncovered cluster A. This happens
with probability φ(A)

φ . Let pa denote the probability that we choose a ∈ A as our center, given the
center is in A, and let φa denote φ(A) after we choose a as our center. Once again, we apply our
inductive hypothesis, this time adding A to the set of covered clusters, as well as decreasing both
t and u by 1. It follows that our contribution to E[φOPT] in this case is at most

φ(A)

φ
·
∑

a∈A
pa ·

((
φ(Xc) + φa + 8φOPT(Xu)− 8φOPT(A)

)
· (1 +Ht−1) +

u− t

u− 1
·
(
φ(Xu)− φ(A)

))

≤ φ(A)

φ
·
((

φ(Xc) + 8φOPT(Xu)
)
· (1 +Ht−1) +

u− t

u− 1
·
(
φ(Xu)− φ(A)

))

The last step here follows from the fact that
∑

a∈A paφa ≤ 8φOPT(A), which is implied by Lemma
3.3.

Now, the power-mean inequality states that
∑

A⊂Xu
φ(A)2 ≥ 1

u · φ(Xu)
2. Therefore, if we sum

over all uncovered clusters A, we obtain a potential contribution of at most,

φ(Xu)

φ
·
(
φ(Xc) + 8φOPT(Xu)

)
· (1 +Ht−1) +

1

φ
· u− t

u− 1
·
(
φ(Xu)

2 − 1

u
· φ(Xu)

2

)

=
φ(Xu)

φ

((
φ(Xc) + 8φOPT(Xu)

)
· (1 +Ht−1) +

u− t

u
· φ(Xu)

)
.

Finally, we combine this with (1) to obtain

E[φ′] ≤
(
φ(Xc) + 8φOPT(Xu)

)
· (1 +Ht−1) +

u− t

u
· φ(Xu) +

φ(Xc)

φ
· φ(Xu)

u

≤
(
φ(Xc) + 8φOPT(Xu)

)
·
(
1 +Ht−1 +

1

u

)
+

u− t

u
· φ(Xu).

The inductive step now follows from the fact that 1
u ≤ 1

t .

5

6

Finally, we specialize Lemma 3.4 to obtain the desired bound E[φ] ≤ 8(ln k + 2)φOPT.

Proof of Theorem 3.1. Consider the clustering C after we have completed Step 1. Let A denote the
COPT cluster in which we chose the first center. Applying Lemma 3.4 with t = u = k− 1, and with
A being the only covered cluster, we have

E[φOPT] ≤
(
φ(A) + 8φOPT − 8φOPT(A)

)
· (1 +Hk−1).

The result now follows from Lemma 3.2, and from the fact that Hk−1 ≤ 1 + ln k.

4 This Analysis is Tight

In this section, we show that the D2 seeding used by k-means++ is no better than Ω(log k)-
competitive, thereby showing Theorem 3.1 is tight.

Fix k, and then choose n, ∆, δ such that n � k and ∆ � δ. We construct X with n points.
First choose k centers c1, c2, · · · , ck such that ‖ci − cj‖2 = ∆2 −

(
n−k
n

)
· δ2 for all i 6= j. Now, for

each ci, add data points xi,1, xi,2, · · · , xi,n
k
centered at ci and each distance

√
n−k
2n · δ from ci. If we

do this in orthogonal dimensions for each i, then,

‖xi,i′ − xj,j′‖ =

{
δ if i=j, or
∆ otherwise.

We prove our seeding technique is Ω(log k) worse than the optimal clustering in this case.
Clearly, the optimal clustering has centers corresponding to ci. Using Lemma 3.2, it is easy to

check this leads to an optimal potential φOPT = n−k
2 · δ2. Our proof relies on an induction similar

to that of Lemma 3.4. Here, an “uncovered” cluster from COPT refers to a cluster from which we
have chosen no centers.

Lemma 4.1. Let C be an arbitrary clustering on X with k− t ≥ 1 centers, but with u clusters from
COPT uncovered. Now suppose we add t random centers to C, chosen with D2 weighting. Let C′

denote the the resulting clustering, and let φ′ denote the corresponding potential.
Furthermore, let α = n−k2

n , β = ∆2−2kδ2

∆2 and H ′
u =

∑u
i=1

k−i
ki . Then,

E[φ′] ≥ αt+1 ·
(
nδ2 · (1 +H ′

u) · β +
(n
k
∆2 − 2nδ2

)
· (u− t)

)
.

Proof. We prove this by induction on t. If t = 0, note that

φ′ = φ =
(
n− u · n

k
− k
)
· δ2 + u · n

k
·∆2.

Since n− u · n
k ≥ n

k , we have
n−u·n

k
−k

n−u·n
k

≥
n
k
−k
n
k

= α. Also, α, β ≤ 1. Therefore,

φ′ ≥ α ·
((

n− u · n
k

)
· δ2 · β + u · n

k
·∆2

)
.

Finally, since nδ2u ≥ u · n
k · δ2 · β and nδ2u ≥ nδ2H ′

uβ, we have

φ′ ≥ α ·
(
nδ2 · (1 +H ′

u) · β +
(n
k
∆2 − 2nδ2

)
· u
)
.

6

7

This completes the base case.
We now proceed to prove the inductive step. As with Lemma 3.4, we consider two cases. The

probability that our first center is chosen from an uncovered cluster is

u · n
k ·∆2

u · n
k ·∆2 + (k − u) · n

k · δ2 − (k − t)δ2
≥ u∆2

u∆2 + (k − u)δ2
≥ α · u∆2

u∆2 + (k − u)δ2
.

Applying our inductive hypothesis with t and u both decreased by 1, we obtain a potential contri-
bution from this case of at least

u∆2

u∆2 + (k − u)δ2
· αt+1 ·

(
nδ2 · (1 +H ′

u−1) · β +
(n
k
∆2 − 2nδ2

)
· (u− t)

)
.

The probability that our first center is chosen from a covered cluster is

(k − u) · n
k · δ2 − (k − t)δ2

u · n
k ·∆2 + (k − u) · n

k · δ2 − (k − t)δ2

≥ (k − u)δ2

u∆2 + (k − u)δ2
· (k − u) · n

k · δ2 − (k − t)δ2

(k − u) · n
k · δ2

≥ α · (k − u)δ2

u∆2 + (k − u)δ2
.

Applying our inductive hypothesis with t decreased by 1 but with u constant, we obtain a potential
contribution from this case of at least

(k − u)δ2

u∆2 + (k − u)δ2
· αt+1 ·

(
nδ2 · (1 +H ′

u) · β +
(n
k
∆2 − 2nδ2

)
· (u− t+ 1)

)
.

Therefore,

E[φ′] ≥ αt+1 ·
(
nδ2 · (1 +H ′

u) · β +
(n
k
∆2 − 2nδ2

)
· (u− t)

)
+

αt+1

u∆2 + (k − u)δ2
·
(
(k − u)δ2 ·

(n
k
∆2 − 2nδ2

)
− u∆2 ·

(
H ′(u)−H ′(u− 1)

)
· nδ2 · β

)

However, H ′
u −H ′

u−1 =
k−u
ku and β = ∆2−2kδ2

∆2 , so

u∆2 ·
(
H ′(u)−H ′(u− 1)

)
· nδ2 · β = (k − u)δ2 ·

(n
k
∆2 − 2nδ2

)
,

and the result follows.

Specializing Lemma 4.1, we obtain a lower bound on the expected potential given byD2 seeding.

Proposition 4.2. If φ is constructed according to D2 seeding on X described above, then

E[φ] ≥ αkβ · nδ2 · ln k.
Proof. We apply Lemma 4.1 after the first center has been chosen, taking u = t = k−1. The result
then follows from the fact that 1 +H ′

k−1 = 1 +
∑k−1

i=1

(
1
i − k−1

k

)
= Hk > ln k.

Theorem 4.3. D2 seeding is no better than 2(ln k)-competitive.

Proof. If we fix k and δ, but let n and ∆ approach infinity, then α and β both approach 1. The
result now follows from Proposition 4.2 and from the fact that φOPT = n−k

2 · δ2.

7

8

5 Extensions

In this section, we briefly note two extensions to our main result. First of all, we show that D2

seeding, and hence k-means++, is O(1)-competitive with a probability independent of n.

Proposition 5.1. Let C be an arbitrary clustering, and fix p < 1. Choose u > 0 “uncovered”
clusters from COPT, and let Xu denote the set of points in these clusters. Also let Xc = X − Xu.
Now suppose we add u random centers to C, chosen with D2 weighting. Let C′ denote the the
resulting clustering, and let φ′ denote the corresponding potential. Then, with probability pu,

E[φ′] ≤ 1

1− p
·
(
φ(Xc) + 8φOPT(Xu)

)
.

Proof. Omitted.

Corollary 5.2. Fix p < 1. If C is constructed with k-means++, then the corresponding potential
function φ satisfies E[φ] ≤ 8φOPT

1−p with probability pk−1.

Furthermore, we note that D2 seeding can be generalized to work on arbitrary metric spaces
under a large family of potential functions, even though the k-means algorithm itself applies only
in Euclidean space. Let φ[`] =

∑
x∈X minc∈C‖x − c‖`. (Note that the standard k-means problem

sets φ = φ[2].) We optimize φ[`] by sampling with probability proportional to D` instead of with
probability proportional to D2.

Our proof of Lemma 3.2 requires the fact that φ is based on an inner product. In general, this
is only true for ` = 2. However a weaker version of the result can be proved independent of ` by
using only the triangle inequality.

Lemma 5.3. Let A be an arbitrary cluster in COPT, and let C be the clustering with just one center,
which is chosen uniformly at random from A. Then, E[φ[`](A)] ≤ 4φOPT(A).

The rest of our upper bound analysis carries through without change, except that in the proof
of Lemma 3.3, we lose a factor of 2` from the power-mean inequality.

Lemma 5.4. Let A be an arbitrary cluster in COPT, and let C be an arbitrary clustering. If we add
a random center to C from A, chosen with D` weighting, then E[φ[`](A)] ≤ 2`+2φOPT(A).

Putting this together, we obtain a general theorem.

Theorem 5.5. If C is constructed with D` seeding, then the corresponding potential function φ[`]

satisfies, E[φ[`]] ≤ 2`+2(ln k + 2)φOPT.

6 Empirical Results

We have implemented a preliminary version of k-means++ in C++ and present the empirical studies
here. Recall that the k-means++ augments the k-means algorithm by choosing the initial cluster
centers according to the D2 metric, and not uniformly at random from the data. Overall, the
new seeding method yields a much better performing algorithm, and consistently finds a better
clustering with a lower potential than k-means2 .

2The full test suite along with the datasets used is available at http://theory.stanford.edu/~sergei/kmeans

8

9

6.1 Datasets

For the purposes of the preliminary studies, we evaluate the performance of the algorithms on four
datasets. The first two datasets, NORM-10 and NORM-25, are synthetic. To generate them, we
chose 25 (or 10) “real” centers uniformly at random from the hypercube of side length 500. We
then added points from a Gaussian distribution of variance 1, centered at each of the real centers.
Thus, we obtain a number of well separated Gaussians with the the real centers providing a good
approximation to the optimal clustering.

In addition we evaluate the performance of our algorithm on two real-world datasets. The
Cloud dataset consists of 1024 points in 10 dimension and represents the 1st cloud cover database
available from the UC-Irvine Machine Learning Repository. The last dataset, Intrusion is an
intrusion detection dataset of 494019 points in 35 dimensions, representing the different features
learned by an intrusion detection system.

6.2 Metrics

Since all algorithms we tested are random, we ran 20 trials for each case. We report the minimum
and the average potential, as well as the mean time required to complete. Our implementation is
the standard one with no special optimizations.

6.3 Results

The complete comparisons of k-means and k-means++ are present in Tables 1 through 4. We note
that k-means++ consistently outperformed k-means, both by achieving a lower potential value,
in some cases by several orders of magnitude, and also by completing faster. With the synthetic
examples, the k-means method does not perform well, because the random seeding will inevitably
merge clusters together, and the algorithm will never be able to split them apart. The careful
seeding method of k-means++ avoids this problem altogether, and it almost always attains the
optimal results on the synthetic datasets.

The difference between k-means and k-means++ on the real-world datasets is also quite substan-
tial. On the Cloud dataset, k-means++ terminates almost twice as fast while achieving potential
function values about 20% better. The performance gain is even more drastic on the larger Intru-
sion dataset, where the potential value obtained by k-means++ is better by factors of 10 to 1000,
and is also obtained up to 70% faster.

Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++

10 10898 5.122 2526.9 5.122 0.48 0.05
25 787.992 4.46809 4.40205 4.41158 1.34 1.59
50 3.47662 3.35897 3.40053 3.26072 2.67 2.84

Table 1: Experimental results on the Norm-10 dataset (n = 10000, d = 5)

9

10

Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++

10 135512 126433 119201 111611 0.14 0.13
25 48050.5 15.8313 25734.6 15.8313 1.69 0.26
50 5466.02 14.76 14.79 14.73 3.79 4.21

Table 2: Experimental results on the Norm-25 dataset (n = 10000, d = 15)

Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++

10 7553.5 6151.2 6139.45 5631.99 0.12 0.05
25 3626.1 2064.9 2568.2 1988.76 0.19 0.09
50 2004.2 1133.7 1344 1088 0.27 0.17

Table 3: Experimental results on the Cloud dataset (n = 1024, d = 10)

Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++

10 3.45·108 2.31·107 3.25·108 1.79 ·107 107.5 64.04
25 3.15·108 2.53 ·106 3.1·108 2.06 ·106 421.5 313.65
50 3.08·108 4.67 ·105 3.08 ·108 3.98 ·105 766.2 282.9

Table 4: Experimental results on the Intrusion dataset (n = 494019, d = 35)

References

[1] Pankaj K. Agarwal and Nabil H. Mustafa. k-means projective clustering. In PODS ’04:
Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 155–165, New York, NY, USA, 2004. ACM Press.

[2] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In SCG ’06:
Proceedings of the twenty-second annual symposium on computational geometry. ACM Press,
2006.

[3] Pavel Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software,
San Jose, CA, 2002.

[4] W. Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani. Approximation
schemes for clustering problems. In STOC ’03: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 50–58, New York, NY, USA, 2003. ACM Press.

[5] Frédéric Gibou and Ronald Fedkiw. A fast hybrid k-means level set algorithm for segmentation.
In 4th Annual Hawaii International Conference on Statistics and Mathematics, pages 281–291,
2005.

10

11

[6] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 291–300, New York, NY, USA, 2004. ACM Press.

[7] Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? In SODA ’05: Proceed-
ings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 877–885,
Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

[8] R. Herwig, A.J. Poustka, C. Muller, C. Bull, H. Lehrach, and J O’Brien. Large-scale clustering
of cdna-fingerprinting data. Genome Research, 9:1093–1105, 1999.

[9] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Comput.
Geom., 28(2-3):89–112, 2004.

[10] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+ε)-approximation
algorithm for k-means clustering in any dimensions. In FOCS ’04: Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), pages 454–462,
Washington, DC, USA, 2004. IEEE Computer Society.

[11] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–136, 1982.

[12] Jiŕı Matousek. On approximate geometric k-clustering. Discrete & Computational Geometry,
24(1):61–84, 2000.

11

12

