Expectation-Maximisation algorithm

Christophe Ambroise @

christophe.ambroise@univ-evry.fr
UEVE, UMR CNRS 8071

November 13, 2023

EM algorithm




Mixture models and the EM algorithm
Latent variable models

Assume that the observed variables are correlated because they
arise from a hidden common “cause”. Model with hidden variables
are also known as latent variable models or LVMSs.

L atent variables

In general there are K latent variables, z;1, . .., 2;k, and p visible
variables, 1, . . ., T4, Wwhere usually p >> K. If we have

K > 1, there are many latent factors contributing to each
observation, so we have a many-to-many mapping. If K = 1, we
we only have a single latent variable; in this case, z; is usually
discrete, and we have a one-to-many mapping.

Mixture models

The simplest form of LVM is when z; € {1,..., K}, representing
a discrete latent state:

* p(2;) = Cat(m) (proportions)

» p(xi|z; = k) = pr(x;) (class densities, components),

T satisfy 0 < 7, < land ), 7 = 1.



Mixtures of Gaussians

In this model, each base distribution in the mixture is a multivariate
Gaussian with mean g, and covariance matrix 23y

xz‘e Zﬂ'k/\/ xz\pk,Ek)

Mixture of multinoullis

class- conditional density is a product of Bernoullis:

p(xi|z; =k, 0) = HBer(wij\,ujk).
J



EM algorithm

Data

» Observed data s x1.,

* Missing (or hidden) data: s z1.,
Principle

» Starting from 6°

* At step q

E(xpectation) step:
Q(07 gq) — EZLnliBm [log P(mlinv Z1:n; ‘9)]
M(aximisation) step: 8471 = argmazyQ (0, 607)

EM algorithm

At each iteration the log-likelihood of the parameters increase



Q871,07 > Q(6%69)
0 < Q7,07 — Q(o",
0 < Ez,z,/log P(@ 1
— Iin|®ln P(ml
P(x1., 21:0,077") P(x1.,

logE; .
P(wlznazlznagq) Jensen © Zn| l:n[ P(wli

0 < log/P(CBLle:m
- P(x1.0, 21

P(®1.,, 071

P(x1.,,09)

Elenlwlzn []'Og

0 < log

Example : Mixture of univariate Gaussians

We have

* Observeddatax,-:--,x,
» Missingdata z{,---, 2,

and assume that

f(z) = mifi(z) + (1 — m1) fa(z),

where
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E step: Expectation of Complete log-likelihood
Complete log-likelihood

n K
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Ex|z;@q [log P(il?l;n, Z1:ms @)] = Z Ex|z;@q [H(zzzk)] log P(xz, 4
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E-step

Conditional probabilities
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M step

Maximisation

Exercice

Program an EM algorithm for univariate Poisson mixtures
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