Expectation-Maximisation algorithm

1

Christophe Ambroise •

christophe.ambroise@univ-evry.fr UEVE, UMR CNRS 8071

November 13, 2023

EM algorithm

Mixture models and the EM algorithm

Latent variable models

Assume that the observed variables are correlated because they arise from a hidden common "cause". Model with hidden variables are also known as latent variable models or LVMs.

Latent variables

In general there are K latent variables, z_{i1}, \ldots, z_{iK} , and p visible variables, x_{i1}, \ldots, x_{ip} , where usually p >> K. If we have K > 1, there are many latent factors contributing to each observation, so we have a many-to-many mapping. If K = 1, we we only have a single latent variable; in this case, z_i is usually discrete, and we have a one-to-many mapping.

Mixture models

The simplest form of LVM is when $z_i \in \{1,\ldots,K\}$, representing a discrete latent state:

- $p(z_i) = Cat(\pi)$ (proportions)
- $p(x_i|z_i=k)=p_k(x_i)$ (class densities, components),

$$p(x_i| heta) = \sum_k \pi_k p_k(x_i)$$

 π_k satisfy $0 \leq \pi_k \leq 1$ and $\sum_k \pi_k = 1$.

Mixtures of Gaussians

In this model, each base distribution in the mixture is a multivariate Gaussian with mean μ_k and covariance matrix Σ_k :

$$p(x_i| heta) = \sum_k \pi_k \mathcal{N}(x_i|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k)$$

Mixture of multinoullis

class- conditional density is a product of Bernoullis:

$$p(x_i|z_i=k, heta)=\prod_j Ber(x_{ij}|\mu_{jk}).$$

6

EM algorithm

Data

- Observed data : $x_{1:n}$
- Missing (or hidden) data : : $z_{1:n}$

Principle

- Starting from $heta^0$
- At step q
 - \rightarrow E(xpectation) step:
 - $Q(heta, heta^q) = E_{Z_{1:n}|oldsymbol{x}_{1:n}}[\log P(oldsymbol{x}_{1:n},oldsymbol{z}_{1:n}, heta)]$
 - ightarrow M(aximisation) step: $heta^{q+1} = argmax_{ heta}Q(heta, heta^q)$

8

EM algorithm

At each iteration the log-likelihood of the parameters increase

$$egin{aligned} Q(heta^{q+1}, heta^q) &\geq Q(heta^q, heta^q) \ &0 &\leq Q(heta^{q+1}, heta^q) - Q(heta^q, \ &0 &\leq E_{Z_{1:n}|m{x}_{1:n}}[\lograc{P(m{x}_{1:n})}{P(m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})}] &\leq E_{Z_{1:n}|m{x}_{1:n}}[\lograc{P(m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})}{P(m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})}] &\leq \log E_{Z_{1:n}|m{x}_{1:n}}[rac{P(m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})}{P(m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})}] &\leq \log \int rac{P(m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})}{P(m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})} &\leq \log \int rac{P(m{x}_{1:n},m{x}_{1:n},m{x}_{1:n},m{ heta}^{q+1})}{P(m{x}_{1:n},m{ heta}^{q+1})} &\leq \log rac{P(m{x}_{1:n},m{ heta}^{q+1})}{P(m{x}_{1:n},m{ heta}^{q+1})} &\leq \log e^{-2} \left(e^{-2} (m{x}^{q+1}) + e^{-2} (e^{-2} (m{x}^{q+1}) + e^{-2} (e^{-2} (e$$

Example : Mixture of univariate Gaussians

We have

- Observed data x_1, \cdots, x_n
- Missing data z_1, \cdots, z_n

and assume that

$$f(x)=\pi_1f_1(x)+(1-\pi_1)f_2(x),$$

where

9

E step: Expectation of Complete log-likelihood

Complete log-likelihood

$$egin{aligned} \log P(oldsymbol{x}_{1:n},oldsymbol{z}_{1:n};\Theta) &= \sum_{i=1}^n \sum_{k=1}^K \mathbb{I}_{(z_i=k)} \log P(x_i,z_i=k;\Theta_k) \ &= \sum_{k=1}^K \mathbb{I}_{(z_i=k)} \log P(z_i=k;\Theta_k) \underbrace{P(x_i|z_i)}_{f_k(x_i)} \end{aligned}$$

Expectation

$$\mathbb{E}_{x|z;\Theta^q}[\log P(oldsymbol{x}_{1:n},oldsymbol{z}_{1:n};\Theta)] = \sum_{i,k} \mathbb{E}_{x|z;\Theta^q}[\mathbb{I}_{(z_i=k)}]\log P(x_i,z_i)$$

E-step

Conditional probabilities

$$\mathbb{E}_{x|z;\Theta^q}[\mathbb{I}_{(z_i=k)}]=t^q_{ik}$$

11

M step

Maximisation

Exercice

Program an EM algorithm for univariate Poisson mixtures