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Introduction
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Practical matters



Reference document

The lecture closely follows and largely borrows material from
“Machine Learning: A Probabilistic Perspective” (MLAPP) from
Kevin P. Murphy, chapters:
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Chapter 10: Directed graphical models (Bayes nets)Practical matters
Evaluation

The project will be evaluated through of a project in R or Python
(realized by 2 or 3 student). Each project will be different and rated
on the basis of

a code (1/3)

a presentation (15 minutes) (1/3)

a report (1/3)
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What is a graphical model ?

A graphical model is a probability distribution in a factorized form

There a two main type of representation of the factorization:

directed graphical model

undirected graphical model

Why the term graph ?

Conditionnal independences between variables are well modeled
via Graphs
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What is it usefull for ?
reduce the number of parameters

→ may be used for supervised or unsupervised approaches

allow exploratory data analysis by providing a simple graphical
representation

→ “approach causality”
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What problems does it raise ?
learning the parameters of a given factorized form

learning the structure of the graphical model (factorized form)
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Directed Graphical Models
(Chapter 10 MLAPP)
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Joint distribution
Observation

Suppose we observe multiple correlated variables, such as words
in a document, pixels in an image, or genes in a microarray.
Joint distribution

How can we compactly represent the joint distribution ?p(x|θ)
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Chain Rule

By the chain rule of probability, we can always represent a joint
distribution as follows, using any ordering of the variables:

The problem of the number of parameters

 There are  parameters
in the system

p(x1:V ) = p(x1)p(x2|x1)p(x3|x2,x1)p(x4|x1,x2,x3). . . p(x

O(K) + O(K 2) + O(K 3)+. . . O(K V )
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Conditional independence

The key to e�ciently representing large joint distributions is to
make some assumptions about conditional independence (CI).

 is conditionaly independent of  knowing Z if once you know 
knowing  does not help you to guess 

X ⊥ Y |Z ⇔ p(X,Y |Z) = p(X|Z)p(Y |Z)

X Y Z
Y X

13

Conditional independence: an example

Setting: picking a card at random in a traditional set of cards

1. if full set of color and values then 

2. if all diamond faces ( ) are discarded from the set then
 but still 

color ⊥ value

⧫
color ⊥̸ value color ⊥ value|Facecard

P(King|Facecard) = 1/3 = P(♣|Facecard)

P(King♣|Facecard) = 1/9 = P(King|Facecard)P(♣|Fa
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Simpli�cation of chain rule
Simpl�ciation of chain rule factorization

Let assume that , �rst order Markov
assumption.

 parameters

xt+1 ⊥ x1:t−1|xt

p(x1:V ) = p(x1)
V

∏
t=2

p(xt|xt−1)

K − 1 + K 2
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Graphical models

A graphical model (GM) is a way to represent a joint distribution by
making Conditional Independence (CI) assumptions.

the nodes in the graph represent random variables,

and the (lack of) edges represent CI assumptions.

A better name for these models would in fact be ‘’independence
diagrams’’

There are several kinds of graphical model, depending on whether



the graph is directed,

undirected,

or some combination of directed and undirected.
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Example of directed and undirected graphical
model
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Graph terminology

A graph  consists of

a set of nodes or vertices, , and

a set of edges, .

Adjacency matrix

We can represent the graph by its adjacency matrix, in which we
write  to denote , that is, if  is an
edge in the graph. If  iff , we say the
graph is undirected, otherwise it is directed.

We usually assume , which means there are no self
loops.

G = (V ,E)

V = {1, . . . ,V }

E = {(s, t) : s, t ∈ V }

G(s, t) = 1 (s, t) ∈ E s → t
G(s, t) = 1 G(t, s) = 1

G(s, s) = 0
18

Graph terminology



Parent: For a directed graph, the parents of a node is the set of
all nodes that feed into it: .

Child: For a directed graph, the children of a node is the set of
all nodes that feed out of it: .

Family: For a directed graph, the family of a node is the node
and its parents, .

Root: For a directed graph, a root is a node with no parents.

Leaf: For a directed graph, a leaf is a node with no children.

Ancestors: For a directed graph, the ancestors are the parents,
grand-parents, etc of a node. That is, the ancestors of t is the
set of nodes that connect to t via a trail:

.

Descendants: For a directed graph, the descendants are the
children, grand-children, etc of a node. That is, the descendants

pa(s) ≜ {t : G(t, s) = 1}

ch(s) ≜ {t : G(s, t) = 1}

fam(s) = s ∪ pa(s)

anc(t) ≜ {s : s ⇝ t}
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Clique: For an undirected graph, a clique is a set of nodes that
are all neighbors of each other.

A maximal clique is a clique which cannot be made any larger
without losing the clique property.

Neighbors For any graph, we de�ne the neighbors of a node as
the set of all immediately connected nodes,

. For an undirected
graph, we write  to indicate that s and t are neighbors.

Degree: The degree of a node is the number of neighbors. For
directed graphs, we speak of the in-degree and out-degree,
which count the number of parents and children.

Cycle or loop: For any graph, we de�ne a cycle or loop to be a
series of nodes such that we can get back to where we started
by following edges

DAG A directed acyclic graph or DAG is a directed graph with no

nbr(s) ≜ {t : G(s, t) = 1vG(t, s) = 1}
s ∼ t
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Directed graphical models
A directed graphical model or DGM is a GM whose graph is a
DAG.

These are more commonly known as Bayesian networks

These models are also called belief networks

Finally, these models are sometimes called causal networks,
because the directed arrows are sometimes interpreted as
representing causal relations.
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Topological ordering of DAGs
nodes can be ordered such that parents come before children

it can be constructed from any DAG

The ordered Markov property

a node only depends on its immediate parents

where pa(s) are the parents of node s, and pred(s) are the
predecessors of node s in the ordering.

xs ⊥ xpred(s)∖pa(s)|xpa(s)
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General form of factorization

if the Conditional Independence assumptions encoded in DAG G
are correct

p(x1:V ) =
V

∏
t=1

p(xt|xpa(t))
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Examples
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Naive Bayes classi�ers

The naive Bayes assumption is rather naive, since it assumes the
features are conditionally independent.

p(y,x) = p(y)∏
j

p(xj|y)
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Markov and hidden Markov models
Markov chain

Hidden Markov Model

The hidden variables often represent quantities of interest, such as
the identity of the word that someone is currently speaking. The
observed variables are what we measure, such as the acoustic
waveform.

p(x1:T ) = p(x1)p(x2|x1)p(x3|x2). . . = p(x1)
T

∏
t=2

p(xt|xt−1)
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Directed Gaussian graphical models

Consider a DGM where all the variables are real-valued, and all the
Conditional Proba. Distributions have the following form:

Directed GGM (Gaussian Bayes net)

p(xt|xpa(t)) = N (xt|μt + wT
t xpa(t),σ

2
t )

p(x) = N (x|μ, Σ)
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Directed GGM (Gaussian Bayes net)

For convenience let rewrite the CPDs

where ,  is the conditional standard deviation of
 given its parents, wts is the strength of the  edge, and 

is the local mean.
Mean

The global mean is just the concatenation of the local means

xt = μt + ∑
s∈pa(t)

wts(xs − μs) + σtzt

zt ∼ N (0, 1) σt

xt s → t μt

μ = (μ1, . . . ,μD)t.
29

Directed GGM (Gaussian Bayes net)
Covariance matrix

where  Let consider 

We have

where 

(x − μ) = W(x − μ) + Sz

S ≜ diag(S) e ≜ Sz = (I − W)(x − μ)

Σ = cov(x − μ) = cov((I − W)−1e) = cov(USz) = US 2U

U = (I − W)−1
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Examples

Two extreme cases

Isolated vertices : Naive Bayes where , p vertices, no
edges

Fully connected Graph: p vertices,  directed edges

Σ = S

p(p − 1)/2

Click to goto exercice on Directed GGM

31

Learning {#learning}
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Learning from complete data (with known
graph structure)

If all the variables are fully observed in each case, so there is no
missing data and there are no hidden variables, we say the data is
complete.

The likelihhod decomposes according the graph structure

Discrete distribution

p(D|θ) =
N

∏
i=1

p(xi|θ) =
N

∏
i=1

∏
t∈V

p(xit|xi,pa(t), θt)

Click to goto exercice on Sprinkler

and thus  Of course, the MLE

suffers from the zero-count

Ntck ≜
N

∑
i=1

I(xi,t = k,xi,pa(t) = c)

p̂(xt = k,xpa(t) = c) = Ntck

∑k′ Ntck′
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Conditional independence
properties of DGMs

36

Diverging edges (fork)

With the DAG

with have

but

Exercice

A ← C → B

A ⊥̸ B

A ⊥ B|C
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Chain (Head - tail)

With the DAG

with have

but

Exercice

A → C → B

A ⊥̸ B

A ⊥ B|C
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Converging edges (V) and collider

With the DAG

with have

but

Exercice

A → C ← B

A ⊥ B

A ⊥╱B|C



Show it
Independence map

a directed graph  is an I-map (independence map) for p, or that p
is Markov wrt G,

iff , where  is the set of all CI statements that
hold for distribution p.

This allows us to use the graph as a safe proxy for p
Minimal I-map

G

I(G) ⊆ I(p) I(p)
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The fully connected graph is an I map of all distributionsd-separation
The “d” in d-separation and d-connection stands for
dependence.

d-separation is related the ideas of active path and active vertex
on a path

a path is active if it carries information, or dependence.

Thus, when the conditioning set is empty, only paths that
correspond to “causal connection” are active (creating
dependance).
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d-separation: example of Pearl (1988)

two independent causes of your car refusing to start: having no
gas and having a dead battery.

dead battery –> car won’t start <– no gas

Telling you that the battery is charged tells you nothing about
whether there is gas,

Telling you that the battery is charged after I have told you that
the car won’t start tells me that the gas tank must be empty.

So independent causes are made dependent by conditioning on a
common effect, which in the directed graph representing the
causal structure is the same as conditioning on a collider. 41

d-separation

When a vertex is in the conditioning set, its status with respect to
being active or inactive �ip-�ops. If we condition by C

Are variables A and B are d-separated by C (in boldface).

1. A –> C –> B Inactive

2. A <– C <– B Inactive

3. A <– C –> B Iactive

4. A –> C <– B, C is a collider and thus inactive when the
conditioning set is empty, so condiitionning by C it becomes
Active (produce dependence)

42



Formulation d-separation de�nition

an undirected path P is d-separated by a set of nodes E iff at least
one of the following conditions hold:

P contains a chain,  or  where

P contains a fork,  where 

P contains a collider,  where  and nor is
any descendant of m.

s → m → t s ← m ← t
m ∈ E

s ← m → t m ∈ E

s → m ← t m ∉ E
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Alternative formulation of d-connection:

If G is a directed graph in which X, Y and E are disjoint sets of
vertices, then X and Y are d-connected by E in G if and only if there
exists an undirected path P between some vertex in X and some
vertex in Y such that

for every collider C on P, either C or a descendent of C is in E
(active path),

and no non-collider on P is in E (no inactive path).

X and Y are d-separated by E in G if and only if they are not d-
connected by E in G (all path are inactives… ).



Independance requires all possible paths to be inactive whereas
dependence requires only on leak (one active path)

see  for
examples

https://www.youtube.com/watch?v=yDs_q6jKHb0
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d-separation versus conditional independence

a set of nodes A is d-separated from a different set of nodes B
given a third observed set E iff each undirected path from every
node  to every node  is d-separated by E:

 A is d-separated from B given E

a ∈ A b ∈ B

xA ⊥G xB|xE ⇔

45



Consequences of d-separation

Directed local Markov property

From the d-separation criterion, one can conclude that
 where the non-descendants of a node

 are all the nodes except for its descendants
t ⊥ nd(t)∖pa(t)|pa(t)
nd(t)
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Consequences of d-separation
Ordered Markov property

A special case of directed local Markov property is when we only
look at predecessors of a node according to some topological
ordering. We have t ⊥ pred(t)∖pa(t)|pa(t)
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Markov blanket

The set of nodes that renders a node t conditionally independent of
all the other nodes in the graph is called t’s Markov blanket

The Markov blanket of a node in a DGM is equal to the parents, the
children, and the co-parents.

mb(t) ≜ pa(t) ∪ ch(t) ∪ copa(t)
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Markov blanket

To understand the Markov blanket, one could start with the local
Markov property which block the dependence to non-descendant
by conditioning on the parents.

To further block the path the descendants of  one has to

Condition on the children of t.

But conditioning on the children open the path to the
coparents.

Thus one needs conditioning on the coparents to block all
paths.

t
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Graphical Model Learning
Structure (chapter 26
MLAPP)
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Introduction

Two main applications of structure learning:

1. knowledge discovery (requires a graph topology)

2. density estimation (requires a fully speci�ed model).

main obstacle

the number of possible graphs is exponential in the number of
nodes: a simple upper bound is .O(2V (V−1)/2)
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Relevance network

A relevance network is a way of visualizing the pairwise mutual
information between multiple random variables:

we simply choose a threshold 

draw an edge from node  to node  if 

Major problem

the graphs are usually very dense,

most variables are dependent on most other variables, even
after thresholding the MIs.

α

i j I(Xi;Xj) > α

53

Gaussian case

In the Gaussian case,  where
 is the correlation coe�cient so we are essentially visualizing ;

this is known as the covariance graph.
Exercice : Gaussian mutual information

Show the previous statement

I(Xi;Xj) = −1/2 log (1 − ρ2
ij)

ρij Σ
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Dependency networks
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Learning tree structures

Since the problem of structure learning for general graphs is NP-
hard (Chickering 1996), we start by considering the special case of
trees. Trees are special because we can learn their structure
e�ciently
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Joint Distribution associated to a directed tree

A directed tree, with a single root node r, de�nes a joint distribution
as follows

The distribution is a product over the edges and the choice of root
does not matter
Symetrization

To make the model more symmetric, it is preferable to use an
undirected tree:

p(x|T ) =∏
t∈V

p(xt|xpa(t))

( )

p(x|T ) =∏
t∈V

p(xt) ∏
(s,t)∈E

p(xs,xt)

p(xs)p(xt)
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Chow-Liu algorithm for �nding the ML tree
structure (1968)

Goal: Chow Liu algorithm constructs tree distribution
approximation that has the minimum Kullback–Leibler divergence
to the actual distribution (that maximizes the data likelihood)
Principle

1. Compute weight  of each (possible) edge 

2. Find a maximum weight spanning tree (MST)

3. Give directions to edges in MST by chosing a root node

I(s, t) (s, t)
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Chow-Liu algorithm for �nding the ML tree
structure (1968)
log-likelihood

thus  and .
Mutual information of a pair of variables

logP(θ|D,T ) =∑
tk

Ntk log p(xt = k) +∑
st

∑
jk

Nstjk log
p

p̂(xt = k) = Ntk

N p̂(xs = j,xt = k) =
Nstjk

N

I(s, t) =∑
jk

p̂(xs = j,xt = k) log
p̂(xs = j,xt = k)

p̂(xs = j)p̂(xt = k)



The Kullback–Leibler divergence

logP(θ̂ML|D,T )

N
=∑

tk

p̂(xt = k) log p̂(xt = k) +∑
st

I(s

59

Chow-Liu algorithm

There are several algorithms for �nding a max spanning tree
(MST). The two best known are - Prim’s algorithm and - Kruskal’s
algorithm.

Both can be implemented to run in  time, where
 is the number of edges and  is the number of nodes.

O(ElogV )
E = V 2 V
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Exercice Gaussian Chow-Liu
1. Show that in the Gaussian case, 

,where  is the correlation coe�cient (see Exercise 2.13,
Murphy)

2. Given a realisation of  gaussian vector of size  �nd the ML
tree structured covariance matrix using Chow-Liu algorithm.

I(s, t) = − 1
2 log(1 − ρ2

st)
ρst

n p
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TAN: Tree-Augmented Naive Bayes
Naive Bayse with Chow-Liu
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Mixtures of trees
A single tree is rather limited in its expressive power.

learning a mixture of trees (Meila and Jordan 2000), where
each mixture component may have a different tree topology is
an alternative

Tntegrating out over all possible trees.

This can be done in  time using the matrix tree theorem.V 3
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Learning DAG structures

Three DAGs. G1 and G3 are Markov equivalent,G2 is not.
Graphs are Markov equivalent

if they encode the same set of CI assumptions
64



Learning DAG structures
An ill posed problem

when we learn the DAG structure from data, we will not be able to
uniquely identify all of the edge directions

we can learn DAG structure “up to Markov equivalence”.

Do not read too much into the meaning of particular edge
orientations, since we can often change them without changing
the model in any observable way.
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Exact structural inference

Exact structural inference is based on the computation of exact
posterior over graphs, .

It requires:

the computation of the likelihood 

the computation of the prior 

This solution allows to compared different graph in terms of
posterior and eventually �nd the MAP if the search space is small

p(G|D)

p(D|G)

p(G)
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Exact structural inference (categorical case)

Consider  be the value of node t in case i,
where

 is the number of states for node .

, for , and 
, where  is the number of parent combinations (possible
conditioning cases).

Let  be the degree or fan-in of node t, so that
.

xit ∈ {1, ⋯ ,Kt}

Kt t

θtck ≜ p(xt = k|xpa(t) = c) k = 1 : Kt c = 1 : Ct

Ct

dt = dim(pa(t))
Ct = K dt
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Exact structural inference (categorical case)
Prior

where  is the number of parent combinations (possible
conditioning cases)
Likelihood

p(θ) =
V

∏
t=1

p(θt) =
V

∏
t=1

Ct

∏
c=1

p(θtc)

Ct

p(D|G, θ) =
V

∏
t=1

Ct

∏
c=1

Kt

∏
k=1

θNtck

tck



where  is the number of time node t is in state k and its parent
in state c.

Ntck
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Exact structural inference (categorical case)

Chosing a Dirichlet prior  allows to
compute the posterior

where , and .
Local scoring

p(θtc) = Dir(θtc|αtc)

p(D|G) =
V

∏
t=1

Ct

∏
c=1

B(Ntc + αtc)

B(αtc)

Ntc = ∑kNtck αtc = ∑k αtck



For node t and its parents

Marginal likelihood factorizes according to the graph structure.

score(Nt,pa(t)) ≜
Ct

∏
c=1

B(Ntc + αtc)

B(αtc)
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Setting the prior

How should we set the hyper-parameters  ?

Jeffreys prior of the form  violates a property called
likelihood equivalence

This property says that if G1 and G2 are Markov equivalent ,
they should have the same marginal likelihood

BDe prior

Geiger and Heckerman (1997) proved that, for complete
graphs, the only prior that satis�es likelihood equivalence and
parameter independence is the Dirichlet prior, where the pseudo
counts have the form

αtck

αtck = 1/2

( )



where  is called the equivalent sample size, and  is some
prior joint probability distribution. This is called the BDe prior
(Bayesian Dirichlet likelihood equivalent).

αtck = αp0(xt = k,xpa(t) = c)

α > 0 p0
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Example of Exact structural inference
(Neapolitan 2003, p.438)
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Scaling up to larger graphs

The main challenge in computing the posterior over DAGs is that
there are so many possible graphs.

Consequently, we must settle for �nding a locally optimal MAP
DAG.
Popular solution: Greedy hill climbing

72

Learning causal DAGs
Causal models

predict the effects of interventions to, or manipulations of, a
system.

Causal claims are inherently stronger, yet more useful, than
purely associative claims

Causal interpretation of DAGs

 in a DAG to mean that “A directly causes B” so if we
manipulate A, then B will change.

Known as the causal Markov assumption.

A → B
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Intervention
Perfect intervention

represents the act of setting a variable to some known value

A real world example of such a perfect intervention is a gene
knockout experiment

do calculus notation

 to denote the event that we set  to 

A causal model makes inferences of the form
,

Different from making inferences of the form .

do(Xi = xi) Xi xi

p(x|do(Xi = xi))

p(x|Xi = xi)
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Observing versus doing

Consider a 2 node DGM 

 if you smoke

 otherwise,

 if you have yellow-stained �ngers

 otherwise.

If I observe you have yellow �ngers, I am licensed to infer that you
are probably a smoker (since nicotine causes yellow stains):

S → Y

S = 1

S = 0

Y = 1

Y = 0

p(S = 1|Y = 1) > p(S = 1)



If I intervene and paint your �ngers yellow, I am no longer licensed
to infer this, since I have disrupted the normal causal mechanism.
Thus

p(S = 1|do(Y = 1)) = p(S = 1)
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Graph surgery

One way to model perfect interventions is to use graph surgery: -
represent the joint distribution by a DGM, - cut the arcs coming into
any nodes that were set by intervention.
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Exercices on Directed
Graphical Models

78

Exercice Gaussian Bayesian Network
Data

Let consider the following graph  where -
, ,  -  -

 -  -
,

Problem

x1 → x2 → x3

E[x1] = b1 E[x2] = b2 E[x3] = b3 x1 = b1 + z1

x2 = b2 + (x1 − b1) + z2 x3 = b3 + 1/2(x2 − b2) + z3

σ1 = σ2 = σ3 = 1
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Exercice Directed GGM
μT = (0, 1, 2)

diag(S) = (1, 1, 1)

W =
⎛⎜⎝0 0 0

1 0 0

0 1/2 0

⎞⎟⎠ 80

Exercice Directed GGM

We can observe that the precision matrix has the some support as
W

n=10001

mu=c(0,1,2)2
sigma=c(1,1,1)3

W=matrix(c(0,1,0,0,0,1/2,0,0,0),3,3)4

U=solve(diag(rep(1,3))-W)5

S=diag(sigma)6
Sigma=U%*%S^2%*%t(U)7

solve(Sigma)8

     [,1]  [,2] [,3]
[1,]    2 -1.00  0.0
[2,]   -1  1.25 -0.5
[3,]    0 -0.50  1.0
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Exercice Directed GGM
First solution (direct)

Second solution (constructive)

library(mvtnorm)1
Xprime=rmvnorm(n,mean=c(0,1,2),sigma=Sigma)2

X=matrix(0,n,3)1

Z=matrix(rnorm(n*3),n,3)2
for (i in 1:n)3

  for (j in 1:3)4

    X[i,j]=mu[j]+sigma[j]*Z[i,j] + sum(W[j,]*(X[i,]-mu))5

Click to go Back to Lecture
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Sprinkler Exercice

Let us de�ne the structure of the network
library(bnlearn)1

library(visNetwork)2

variables<-c("Nuageux","Arrosage","Pluie","HerbeMouillee")3
net<-empty.graph(variables)4

adj = matrix(0L, ncol = 4, nrow = 4, dimnames=list(variables, variables))5

adj["Nuageux","Arrosage"]<-16
adj["Nuageux","Pluie"]<-17

adj["Arrosage","HerbeMouillee"]<-18

adj["Pluie","HerbeMouillee"]<-19
amat(net)=adj10
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Sprinkler Exercice
#plot.network(net) # for a nice html plot1

plot(net)2
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Sprinkler Exercice

Simulate a sample according the model
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Basic Simulation with using conditional
probability tables

Function for one event (one line of dataframe)
NAPHM1<-function(n){1
  N<-rbinom(1,size = 1,prob = 1/2)2

  if (N==1)  {A<-rbinom(1,size = 1,prob = 0.1)} else {A<-rbinom(1,size =1,prob = 0.53

  if (N==1)  {P<-rbinom(1,size = 1,prob = 0.8)} else {P<-rbinom(1,size = ,1,prob = 04

 if (A+P==0)  HM<-rbinom(1,size = 1,prob = 0.1) else if 5
 (A+P==1) HM<-rbinom(1,size = 1,prob = 0.9) else 6

  HM<-rbinom(1,size = 1,prob = 0.99) 7

 X<-as.logical(c(N,A,P,HM))8
}9
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Basic Simulation with using conditional
probability tables

n<-10001

X<-data.frame(t(sapply(1:n,NAPHM1)))2
names(X)<-c("Nuageux","Arrosage","Pluie","HerbeMouillee")3

head(X)4

  Nuageux Arrosage Pluie HerbeMouillee
1    TRUE    FALSE  TRUE          TRUE
2    TRUE    FALSE  TRUE          TRUE
3    TRUE    FALSE  TRUE          TRUE
4   FALSE     TRUE FALSE          TRUE
5   FALSE     TRUE FALSE         FALSE
6    TRUE     TRUE  TRUE          TRUE
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Learning the parameters
mean(X$Nuageux) -> pNuageux1

lapply(sousTableauxNuageux<-split(X,X$Nuageux),2

       function(XsousTableau){mean(XsousTableau$Arrosage)})3

lapply(sousTableauxNuageux<-split(X,X$Nuageux),4
       function(XsousTableau){mean(XsousTableau$Pluie)})5

lapply(sousTableauxNuageux<-split(X,X$Arrosage + X$Pluie),6

       function(XsousTableau){mean(XsousTableau$HerbeMouillee)})7

Back to lecture
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Exercices directed Graphical Model
Joint distribution and graphical decomposition (Bishop 8.3)

The joint distribution over three binary variables
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Exercices directed Graphical Model
Bishop 8.3

Consider three binary variables  having the joint
distribution given in Table above. Show by direct evaluation that
this distribution has the property that a and b are marginally
dependent, so that , but that they become
independent when conditioned on c, so that

 for both  and .

a,  b,  c  ∈ {0, 1}

p(a, b) ≠= p(a)p(b)

p(a, b ∣ c) = p(a ∣ c)p(b ∣ c) c = 0 c = 1
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Exercices directed Graphical Model
Bishop 8.4

Show by direct evaluation that .
Draw the corresponding directed graph.

p(a, b, c) = p(a)p(c ∣ a)p(b ∣ c)
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Local Markov Property
directed local Markov property

 where the non-descendants of a node
 are all the nodes except for its descendants

We the topological ordering we have

Thus

t ⊥ nd(t)∖pa(t)|pa(t)
nd(t)

p(xt|x1, ⋯ ,xt−1) = p(xt|xnd(t)) = p(xt|xpa(t))

p(xt,xnd(t)∖pa(t)|xpa(t)) = p(xnd(t)∖pa(t)|xpa(t))p(xt|xpa(t),xnd

= p(xnd(t)|xpa(t))p(xt|xpa(t))
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Gaussian mutual information

I(s, t) =E[log
p(xs,xt)

p(xs)p(xt)
]

= −
1

2
log

|Σ|

|diag(σ2
1,σ2

2)|
−

1

2
E[ztΣ−1z − zt [

= −
1

2
log(1 − ρ2) − 1/2trace(E[zzt(Σ−1 − [

= −
1

2
log(1 − ρ2) − trace(I − [ ])

= −
1

2
log(1 − ρ2)

1/σ2
1

0

1/σ2
1

0

1 σ12/σ2
2

σ12/σ2
1 1



where  and z = [ ] − [ ]
xs

xt

μs

μt

E[zzt] = Σ
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KL-divergence

Maximizing log-likelihood is equivalent to minimizing KL-
divergence
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Projects

96

List 2023

Explain a concept and illustrate with an example:



Commented Code Notebook (not a full report).

10 minutes OBS recording

1. Simulation of images using a Strauss model (Markov Random
Field). You may use the paper “Markov Random Field Texture
Models” Code for simulation Bonus : estimation of the
parameters

2. Programmation of Graphical Lasso. You may use the paper
“Sparse inverse covariance estimation with the graphical lasso”
Original code of the algorithm illustrated with sachs data

3. Program you own Restricted Boltzmann Machine for prediction.
You may use the paper “A Practical Guide to Training Restricted
Boltzmann Machines” Original code of the algorithm with
illustration on MNIST dataset

4. Structural equation models (SEM) using the NoTears approach.
You may use the paper “DAGs with NO TEARS: Continuous
Optimization for Structure Learning” Use the code from
https://github.com/xunzheng/notears and illustrate with one 97




