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1 Introduction

1.1 Reference documents

Machine Learning: A Probabilistic Perspective9



by Kevin P. Murphy
A comprehensive introduction to graphical models and probabilistic modeling across applied
domains.

10
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Causal Inference in Statistics: A Primer
by Judea Pearl, Madelyn Glymour & Nicholas P. Jewell
Accessible approach to causal reasoning, interventions, and graphical causal models.

1.2 Reference documents

The lecture closely follows and largely borrows material from “Machine Learning: A Proba-
bilistic Perspective” (MLAPP) from Kevin P. Murphy, chapters:

• Chapter 10: Directed graphical models (Bayes nets)
• Chapter 19: Undirected graphical models (Markov random fields)
• Chapter 20: Exact inference for graphical models
• Chapter 26: Graphical model structure learning

and from “Causal inference in statistics” from Judea Pearl et. al

1.3 Practical matters

1.3.1 Evaluation

• a written exam

1.4 What is a graphical model ?

A graphical model is a probability distribution in a factorized form

There a two main type of representation of the factorization:

• directed graphical model
• undirected graphical model

1.4.1 Why the term graph ?

Conditionnal independences between variables are well modeled via Graphs

12
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1.5 What is it usefull for ?

• reduce the number of parameters

– may be used for supervised or unsupervised approaches

• allow exploratory data analysis by providing a simple graphical representation

– “approach causality”

1.6 What problems does it raise ?

• learning the parameters of a given factorized form
• learning the structure of the graphical model (factorized form)

1.7 What is Causality?

Cause = That which produces or modifies an effect.

Causality refers to a relationship in which:

• One phenomenon (the cause)

• Brings about or influences another (the effect)

1.8 Historically:

1.8.1 Aristotle (384-322 BC): cause explains why things happen

“We do not have knowledge of a thing until we have grasped its why—that is to say, its cause.”
Wikipedia

1.8.2 Hume (1711-1776): we only observe sequences, not true causation

When you drop a vase and it breaks you don’t observe the ‘causation.’ You observe
a vase dropping and you observe it shattering.

Causality stems from habit or mental expectation, built over repeated experience.

13
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1.9 Causality in Science

• Causality relies on temporal order and natural laws
• Often formalized in equations:

𝑑𝑌
𝑑𝑡 = 𝑓(𝑋, 𝑌 , 𝑡)

This shows that variable 𝑋 drives changes in 𝑌 over time.

1.10 Causality in Statistics

Three main views:

• Dependence: 𝑃(𝑌 ∣ 𝑋 = 𝑥) ≠ 𝑃(𝑌 )
• Prediction: Granger causality — past 𝑋 predicts future 𝑌
• Intervention (Pearl):

𝑋 causes 𝑌 ⇔ 𝑃(𝑌 ∣ 𝑑𝑜(𝑋 = 𝑥)) ≠ 𝑃(𝑌 )

→ Causal effect � statistical association

1.11 Simpson’s Paradox: When Numbers Lie

Simpson’s paradox occurs when a statistical association observed in the aggregate popu-
lation reverses when the data are split into subgroups.

→ It shows why causality � statistics.
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1.12 Kidney Stone Treatment Example

Suppose a new treatment for kidney stones seems worse overall:

• New drug: 78% recovery

• Standard: 83% recovery

But when we stratify by stone size, we find the paradox…

1.13 Stratified Recovery Rates

Stone Size Treatment Recovered Total Recovery Rate
Small New 81 87 93%
Small Standard 234 270 87%
Large New 192 263 73%
Large Standard 55 80 69%
Total New 273 350 78%
Total Standard 289 350 83%

Contingency Table (Kidney Stone Example)

1.14 What’s Going On?

• New drug is better for both small and large stones
• But the drug was more often given to patients with large stones

– These are harder to treat

• Aggregated data hides this → confounding bias

15



Figure 1: Causal DAG for Simpson’s paradox: treatment (T) influences recovery (R), but stone
size (S) is a confounder.
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1.15 Causal Graph Explains It

2 Directed Graphical Models (Chapter 10 MLAPP)

2.1 Joint distribution

2.1.1 Observation

Suppose we observe multiple correlated variables, such as words in a document, pixels in an
image, or genes in a microarray.

2.1.2 Joint distribution

How can we compactly represent the joint distribution 𝑝(𝑥|𝜃)?

2.2 Chain Rule

By the chain rule of probability, we can always represent a joint distribution as follows, using
any ordering of the variables:

𝑝(𝑥1∶𝑉 ) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥3|𝑥2, 𝑥1)𝑝(𝑥4|𝑥1, 𝑥2, 𝑥3)...𝑝(𝑥𝑉 |𝑥1∶𝑉 −1)

2.2.1 The problem of the number of parameters

𝑂(𝐾) + 𝑂(𝐾2) + 𝑂(𝐾3) + ... There are 𝑂(𝐾𝑉 ) parameters in the system

2.3 Conditional independence

The key to efficiently representing large joint distributions is to make some assumptions about
conditional independence (CI).

𝑋 ⟂ 𝑌 |𝑍 ⇔ 𝑝(𝑋, 𝑌 |𝑍) = 𝑝(𝑋|𝑍)𝑝(𝑌 |𝑍)
𝑋 is conditionaly independent of 𝑌 knowing Z if once you know 𝑍 knowing 𝑌 does not help
you to guess 𝑋
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2.4 Conditional independence: an example

Setting: picking a card at random in a traditional set of cards

1. if full set of color and values then 𝑐𝑜𝑙𝑜𝑟 ⟂ 𝑣𝑎𝑙𝑢𝑒
2. if all diamond faces (♦) are discarded from the set then 𝑐𝑜𝑙𝑜𝑟⟂̸𝑣𝑎𝑙𝑢𝑒 but still 𝑐𝑜𝑙𝑜𝑟 ⟂

𝑣𝑎𝑙𝑢𝑒|𝐹𝑎𝑐𝑒𝑐𝑎𝑟𝑑

𝑃(𝐾𝑖𝑛𝑔|𝐹𝑎𝑐𝑒𝑐𝑎𝑟𝑑) = 1/3 = 𝑃(♣|𝐹𝑎𝑐𝑒𝑐𝑎𝑟𝑑)
𝑃(𝐾𝑖𝑛𝑔♣|𝐹𝑎𝑐𝑒𝑐𝑎𝑟𝑑) = 1/9 = 𝑃(𝐾𝑖𝑛𝑔|𝐹𝑎𝑐𝑒𝑐𝑎𝑟𝑑)𝑃 (♣|𝐹𝑎𝑐𝑒𝑐𝑎𝑟𝑑)

2.5 Simplification of chain rule

2.5.1 Simplficiation of chain rule factorization

Let assume that 𝑥𝑡+1 ⟂ 𝑥1∶𝑡−1|𝑥𝑡, first order Markov assumption.

𝑝(𝑥1∶𝑉 ) = 𝑝(𝑥1)
𝑉

∏
𝑡=2

𝑝(𝑥𝑡|𝑥𝑡−1)

𝐾 − 1 + 𝐾2 parameters
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2.6 Graphical models

A graphical model (GM) is a way to represent a joint distribution by making Conditional
Independence (CI) assumptions.

• the nodes in the graph represent random variables,
• and the (lack of) edges represent CI assumptions.

A better name for these models would in fact be ‘’independence diagrams’ ’

There are several kinds of graphical model, depending on whether

• the graph is directed,
• undirected,
• or some combination of directed and undirected.

2.7 Example of directed and undirected graphical model

2.8 Graph terminology

A graph 𝐺 = (𝑉 , 𝐸) consists of

• a set of nodes or vertices, 𝑉 = {1, ..., 𝑉 }, and
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• a set of edges, 𝐸 = {(𝑠, 𝑡) ∶ 𝑠, 𝑡 ∈ 𝑉 }.

2.8.1 Adjacency matrix

We can represent the graph by its adjacency matrix, in which we write 𝐺(𝑠, 𝑡) = 1 to denote
(𝑠, 𝑡) ∈ 𝐸, that is, if 𝑠 → 𝑡 is an edge in the graph. If 𝐺(𝑠, 𝑡) = 1 iff 𝐺(𝑡, 𝑠) = 1, we say the
graph is undirected, otherwise it is directed.

We usually assume 𝐺(𝑠, 𝑠) = 0, which means there are no self loops.

2.9 Graph terminology

• Parent: For a directed graph, the parents of a node is the set of all nodes that feed into
it: 𝑝𝑎(𝑠) ≜ {𝑡 ∶ 𝐺(𝑡, 𝑠) = 1}.

• Child: For a directed graph, the children of a node is the set of all nodes that feed out
of it: 𝑐ℎ(𝑠) ≜ {𝑡 ∶ 𝐺(𝑠, 𝑡) = 1}.

• Family: For a directed graph, the family of a node is the node and its parents, 𝑓𝑎𝑚(𝑠) =
𝑠 ∪ 𝑝𝑎(𝑠).

• Root: For a directed graph, a root is a node with no parents.
• Leaf : For a directed graph, a leaf is a node with no children.
• Ancestors: For a directed graph, the ancestors are the parents, grand-parents, etc of

a node. That is, the ancestors of t is the set of nodes that connect to t via a trail:
𝑎𝑛𝑐(𝑡) ≜ {𝑠 ∶ 𝑠 ⇝ 𝑡}.

• Descendants: For a directed graph, the descendants are the children, grand-children,
etc of a node. That is, the descendants of s is the set of nodes that can be reached via
trails from s: 𝑑𝑒𝑠𝑐(𝑠) ≜ {𝑡 ∶ 𝑠 ⇝ 𝑡}.

2.10 Graph terminology

• Clique: For an undirected graph, a clique is a set of nodes that are all neighbors of each
other.

• A maximal clique is a clique which cannot be made any larger without losing the
clique property.

• Neighbors For any graph, we define the neighbors of a node as the set of all immediately
connected nodes, 𝑛𝑏𝑟(𝑠) ≜ {𝑡 ∶ 𝐺(𝑠, 𝑡) = 1𝑣𝐺(𝑡, 𝑠) = 1}. For an undirected graph, we
write 𝑠 ∼ 𝑡 to indicate that s and t are neighbors.

• Degree: The degree of a node is the number of neighbors. For directed graphs, we speak
of the in-degree and out-degree, which count the number of parents and children.

• Cycle or loop: For any graph, we define a cycle or loop to be a series of nodes such
that we can get back to where we started by following edges

• DAG A directed acyclic graph or DAG is a directed graph with no directed cycles.
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2.11 Directed graphical models

• A directed graphical model or DGM is a GM whose graph is a DAG.
• These are more commonly known as Bayesian networks
• These models are also called belief networks
• Finally, these models are sometimes called causal networks, because the directed ar-

rows are sometimes interpreted as representing causal relations.

2.12 Topological ordering of DAGs

• nodes can be ordered such that parents come before children
• it can be constructed from any DAG

2.12.1 The ordered Markov property

a node only depends on its immediate parents

𝑥𝑠 ⟂ 𝑥𝑝𝑟𝑒𝑑(𝑠)\𝑝𝑎(𝑠)|𝑥𝑝𝑎(𝑠)

where pa(s) are the parents of node s, and pred(s) are the predecessors of node s in the
ordering.

2.13 General form of factorization

𝑝(𝑥1∶𝑉 ) =
𝑉

∏
𝑡=1

𝑝(𝑥𝑡|𝑥𝑝𝑎(𝑡))

if the Conditional Independence assumptions encoded in DAG G are correct

3 Examples

3.1 Naive Bayes classifiers

𝑝(𝑦, 𝑥) = 𝑝(𝑦) ∏
𝑗

𝑝(𝑥𝑗|𝑦)

The naive Bayes assumption is rather naive, since it assumes the features are conditionally
independent.
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3.2 Markov and hidden Markov models

3.2.1 Markov chain

𝑝(𝑥1∶𝑇 ) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥3|𝑥2)... = 𝑝(𝑥1)
𝑇

∏
𝑡=2

𝑝(𝑥𝑡|𝑥𝑡−1)

3.2.2 Hidden Markov Model

The hidden variables often represent quantities of interest, such as the identity of the word
that someone is currently speaking. The observed variables are what we measure, such as the
acoustic waveform.

3.3 Directed Gaussian graphical models

Consider a DGM where all the variables are real-valued, and all the Conditional Proba. Dis-
tributions have the following form:

𝑝(𝑥𝑡|𝑥𝑝𝑎(𝑡)) = 𝒩(𝑥𝑡|𝜇𝑡 + 𝑤𝑇
𝑡 𝑥𝑝𝑎(𝑡), 𝜎2

𝑡 )

3.3.1 Directed GGM (Gaussian Bayes net)

𝑝(𝑥) = 𝒩(𝑥|𝜇, Σ)

3.4 Directed GGM (Gaussian Bayes net)

For convenience let rewrite the CPDs

𝑥𝑡 = 𝜇𝑡 + ∑
𝑠∈𝑝𝑎(𝑡)

𝑤𝑡𝑠(𝑥𝑠 − 𝜇𝑠) + 𝜎𝑡𝑧𝑡

where 𝑧𝑡 ∼ 𝒩(0, 1), 𝜎𝑡 is the conditional standard deviation of 𝑥𝑡 given its parents, wts is the
strength of the 𝑠 → 𝑡 edge, and 𝜇𝑡 is the local mean.

3.4.1 Mean

The global mean is just the concatenation of the local means

𝜇 = (𝜇1, ..., 𝜇𝐷)𝑡.
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3.5 Directed GGM (Gaussian Bayes net)

3.5.1 Covariance matrix

(𝑥 − 𝜇) = 𝑊(𝑥 − 𝜇) + 𝑆𝑧
where 𝑆 ≜ 𝑑𝑖𝑎𝑔(𝑆) Let consider 𝑒 ≜ 𝑆𝑧 = (𝐼 − 𝑊)(𝑥 − 𝜇)
We have

Σ = 𝑐𝑜𝑣(𝑥 − 𝜇) = 𝑐𝑜𝑣((𝐼 − 𝑊)−1𝑒) = 𝑐𝑜𝑣(𝑈𝑆𝑧) = 𝑈𝑆2𝑈 𝑡

where 𝑈 = (𝐼 − 𝑊)−1

3.6 Examples

Two extreme cases

• Isolated vertices : Naive Bayes where Σ = 𝑆, p vertices, no edges
• Fully connected Graph: p vertices, 𝑝(𝑝 − 1)/2 directed edges

Click to goto exercice on Directed GGM

4 Learning

4.1 Learning from complete data (with known graph structure)

If all the variables are fully observed in each case, so there is no missing data and there are no
hidden variables, we say the data is complete.

𝑝(𝒟|𝜃) =
𝑁

∏
𝑖=1

𝑝(𝑥𝑖|𝜃) =
𝑁

∏
𝑖=1

∏
𝑡∈𝑉

𝑝(𝑥𝑖𝑡|𝑥𝑖,𝑝𝑎(𝑡), 𝜃𝑡)

The likelihhod decomposes according the graph structure

Click to goto exercice on Sprinkler

4.1.1 Discrete distribution

𝑁𝑡𝑐𝑘 ≜
𝑁

∑
𝑖=1

𝕀(𝑥𝑖,𝑡 = 𝑘, 𝑥𝑖,𝑝𝑎(𝑡) = 𝑐)

and thus ̂𝑝(𝑥𝑡 = 𝑘, 𝑥𝑝𝑎(𝑡) = 𝑐) = 𝑁𝑡𝑐𝑘
∑𝑘′ 𝑁𝑡𝑐𝑘′

Of course, the MLE suffers from the zero-count
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5 Conditional independence properties of DGMs

5.1 Diverging edges (fork)

With the DAG
𝐴 ← 𝐶 → 𝐵

with have
𝐴⟂̸𝐵

but

𝐴 ⟂ 𝐵|𝐶

5.1.1 Exercice

Show it

5.2 Chain (Head - tail)

With the DAG

𝐴 → 𝐶 → 𝐵
with have

𝐴⟂̸𝐵
but

𝐴 ⟂ 𝐵|𝐶

5.2.1 Exercice

Show it
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5.3 Converging edges (V) and collider

With the DAG

𝐴 → 𝐶 ← 𝐵
with have

𝐴 ⟂ 𝐵

but

𝐴 ⟂�𝐵|𝐶

5.3.1 Exercice

Show it

5.4 Independence map

a directed graph 𝐺 is an I-map (independence map) for p, or that p is Markov wrt G,

• iff 𝐼(𝐺) ⊆ 𝐼(𝑝), where 𝐼(𝑝) is the set of all CI statements that hold for distribution p.

This allows us to use the graph as a safe proxy for p

5.4.1 Minimal I-map

• The fully connected graph is an I-map of all distributions,
• G is a of Minimal I-map p

1. if G is an I-map of p,
2. if there isno 𝐺′ ⊆ 𝐺 which is an I-map of p.
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5.5 d-separation

• The “d” in d-separation and d-connection stands for dependence.

• d-separation is related the ideas of active path and active vertex on a path

• a path is active if it carries information, or dependence.

• Thus, when the conditioning set is empty, only paths that correspond to “causal connec-
tion” are active (creating dependance).

5.6 d-separation: example of Pearl (1988)

two independent causes of your car refusing to start: having no gas and having a dead bat-
tery.

dead battery –> car won’t start <– no gas

• Telling you that the battery is charged tells you nothing about whether there is gas,

• Telling you that the battery is charged after I have told you that the car won’t start tells
me that the gas tank must be empty.

So independent causes are made dependent by conditioning on a common effect, which in the
directed graph representing the causal structure is the same as conditioning on a collider.

5.7 d-separation

When a vertex is in the conditioning set, its status with respect to being active or inactive
flip-flops. If we condition by C

Are variables A and B are d-separated by C (in boldface).

1. A –> C –> B Inactive
2. A <– C <– B Inactive
3. A <– C –> B Iactive
4. A –> C <– B, C is a collider and thus inactive when the conditioning set is empty, so

condiitionning by C it becomes Active (produce dependence)
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5.8 Formulation d-separation definition

an undirected path P is d-separated by a set of nodes E iff at least one of the following
conditions hold:

• P contains a chain, 𝑠 → 𝑚 → 𝑡 or 𝑠 ← 𝑚 ← 𝑡 where 𝑚 ∈ 𝐸
• P contains a fork, 𝑠 ← 𝑚 → 𝑡 where 𝑚 ∈ 𝐸
• P contains a collider, 𝑠 → 𝑚 ← 𝑡 where 𝑚 ∉ 𝐸 and nor is any descendant of m.

5.9 Alternative formulation of d-connection:

If G is a directed graph in which X, Y and E are disjoint sets of vertices, then X and Y are
d-connected by E in G if and only if there exists an undirected path P between some vertex
in X and some vertex in Y such that

• for every collider C on P, either C or a descendent of C is in E (active path),
• and no non-collider on P is in E (no inactive path).

X and Y are d-separated by E in G if and only if they are not d-connected by E in G (all path
are inactives… ).

Independance requires all possible paths to be inactive whereas dependence requires only
on leak (one active path)

see https://www.youtube.com/watch?v=yDs_q6jKHb0 for examples

5.10 d-separation versus conditional independence

a set of nodes A is d-separated from a different set of nodes B given a third observed set E iff
each undirected path from every node 𝑎 ∈ 𝐴 to every node 𝑏 ∈ 𝐵 is d-separated by E:

𝑥𝐴 ⟂𝐺 𝑥𝐵|𝑥𝐸 ⇔ A is d-separated from B given E
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5.11 Consequences of d-separation

5.11.1 Directed local Markov property

From the d-separation criterion, one can conclude that 𝑡 ⟂ 𝑛𝑑(𝑡)\𝑝𝑎(𝑡)|𝑝𝑎(𝑡) where the non-
descendants of a node 𝑛𝑑(𝑡) are all the nodes except for its descendants

5.12 Consequences of d-separation

5.12.1 Ordered Markov property

A special case of directed local Markov property is when we only look at predecessors of a
node according to some topological ordering. We have 𝑡 ⟂ 𝑝𝑟𝑒𝑑(𝑡)\𝑝𝑎(𝑡)|𝑝𝑎(𝑡)
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5.13 Markov blanket

The set of nodes that renders a node t conditionally independent of all the other nodes in the
graph is called t’s Markov blanket

𝑚𝑏(𝑡) ≜ 𝑝𝑎(𝑡) ∪ 𝑐ℎ(𝑡) ∪ 𝑐𝑜𝑝𝑎(𝑡)

The Markov blanket of a node in a DGM is equal to the parents, the children, and the co-
parents.

5.14 Markov blanket

To understand the Markov blanket, one could start with the local Markov property which
block the dependence to non-descendant by conditioning on the parents.

To further block the path the descendants of 𝑡 one has to

• Condition on the children of t.

• But conditioning on the children open the path to the coparents.

• Thus one needs conditioning on the coparents to block all paths.

6 Graphical Model Learning Structure (chapter 26 MLAPP)

6.1 Introduction

Two main applications of structure learning:

1. knowledge discovery (requires a graph topology)
2. density estimation (requires a fully specified model).

6.1.1 main obstacle

the number of possible graphs is exponential in the number of nodes: a simple upper bound
is 𝑂(2𝑉 (𝑉 −1)/2).
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6.2 Relevance network

A relevance network is a way of visualizing the pairwise mutual information between multiple
random variables:

• we simply choose a threshold 𝛼
• draw an edge from node 𝑖 to node 𝑗 if 𝕀(𝑋𝑖; 𝑋𝑗) > 𝛼

6.2.1 Major problem

• the graphs are usually very dense,
• most variables are dependent on most other variables, even after thresholding the MIs.

6.3 Gaussian case

In the Gaussian case, 𝕀(𝑋𝑖; 𝑋𝑗) = −1/2 log (1 − 𝜌2
𝑖𝑗) where 𝜌𝑖𝑗 is the correlation coefficient so

we are essentially visualizing Σ;

this is known as the covariance graph.

6.3.1 Exercice : Gaussian mutual information

Show the previous statement

6.4 Dependency networks

• A simple and efficient way to learn a graphical model structure is to independently fit D
sparse full-conditional distributions 𝑝(𝑥𝑡|𝑥−𝑡)

• any kind of sparse regression or classification method to fit each CPD

– (Heckerman et al. 2000) uses classification/regression trees,
– (Meinshausen and Buhlmann 2006) use ℓ1-regularized linear regression,
– (Wainwright et al. 2006) use ℓ1-regularized logistic regression (see depnetFit for

some code),
– (Dobra 2009) uses Bayesian variable selection
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6.5 Learning tree structures

Since the problem of structure learning for general graphs is NP-hard (Chickering 1996), we
start by considering the special case of trees. Trees are special because we can learn their
structure efficiently

6.6 Joint Distribution associated to a directed tree

A directed tree, with a single root node r, defines a joint distribution as follows

𝑝(𝑥|𝑇 ) = ∏
𝑡∈𝑉

𝑝(𝑥𝑡|𝑥𝑝𝑎(𝑡))

The distribution is a product over the edges and the choice of root does not matter

6.6.1 Symetrization

To make the model more symmetric, it is preferable to use an undirected tree:

𝑝(𝑥|𝑇 ) = ∏
𝑡∈𝑉

𝑝(𝑥𝑡) ∏
(𝑠,𝑡)∈𝐸

𝑝(𝑥𝑠, 𝑥𝑡)
𝑝(𝑥𝑠)𝑝(𝑥𝑡)

6.7 Chow-Liu algorithm for finding the ML tree structure (1968)

Goal: Chow Liu algorithm constructs tree distribution approximation that has the minimum
Kullback–Leibler divergence to the actual distribution (that maximizes the data likelihood)
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6.7.1 Principle

1. Compute weight 𝐼(𝑠, 𝑡) of each (possible) edge (𝑠, 𝑡)
2. Find a maximum weight spanning tree (MST)
3. Give directions to edges in MST by chosing a root node

6.8 Chow-Liu algorithm for finding the ML tree structure (1968)

6.8.1 log-likelihood

log 𝑃(𝜃|𝒟, 𝑇 ) = ∑
𝑡𝑘

𝑁𝑡𝑘 log 𝑝(𝑥𝑡 = 𝑘) + ∑
𝑠𝑡

∑
𝑗𝑘

𝑁𝑠𝑡𝑗𝑘 log 𝑝(𝑥𝑠 = 𝑗, 𝑥𝑡 = 𝑘)
𝑝(𝑥𝑠 = 𝑗)𝑝(𝑥𝑡 = 𝑘)

thus ̂𝑝(𝑥𝑡 = 𝑘) = 𝑁𝑡𝑘
𝑁 and ̂𝑝(𝑥𝑠 = 𝑗, 𝑥𝑡 = 𝑘) = 𝑁𝑠𝑡𝑗𝑘

𝑁 .

6.8.2 Mutual information of a pair of variables

𝐼(𝑠, 𝑡) = ∑
𝑗𝑘

̂𝑝(𝑥𝑠 = 𝑗, 𝑥𝑡 = 𝑘) log ̂𝑝(𝑥𝑠 = 𝑗, 𝑥𝑡 = 𝑘)
̂𝑝(𝑥𝑠 = 𝑗) ̂𝑝(𝑥𝑡 = 𝑘)

6.8.3 The Kullback–Leibler divergence

log 𝑃 ( ̂𝜃𝑀𝐿|𝒟, 𝑇 )
𝑁 = ∑

𝑡𝑘
̂𝑝(𝑥𝑡 = 𝑘) log ̂𝑝(𝑥𝑡 = 𝑘) + ∑

𝑠𝑡
𝐼(𝑠, 𝑡)

6.9 Chow-Liu algorithm

There are several algorithms for finding a max spanning tree (MST). The two best known are
- Prim’s algorithm and - Kruskal’s algorithm.

Both can be implemented to run in 𝑂(𝐸𝑙𝑜𝑔𝑉 ) time, where 𝐸 = 𝑉 2 is the number of edges
and 𝑉 is the number of nodes.
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6.10 Kruskal Algorithm for Maximum Spanning Tree

1. Sort the edges of G into decreasing order by weight. Let T be the set of edges comprising
the maximum weight spanning tree. Set 𝑇 = ∅.

2. Add the first edge to 𝑇 .
3. Add the next edge to 𝑇 if and only if it does not form a cycle in 𝑇 . If there are no

remaining edges exit and report G to be disconnected.
4. If 𝑇 has 𝑛−1 edges (where n is the number of vertices in G) stop and output 𝑇 . Otherwise

go to step 3.

6.11 Exercice Gaussian Chow-Liu

1. Show that in the Gaussian case, 𝐼(𝑠, 𝑡) = −1
2 log(1 − 𝜌2

𝑠𝑡),where 𝜌𝑠𝑡 is the correlation
coefficient (see Exercise 2.13, Murphy)

2. Given a realisation of 𝑛 gaussian vector of size 𝑝 find the ML tree structured covariance
matrix using Chow-Liu algorithm.

6.12 TAN: Tree-Augmented Naive Bayes

• Chow-Liu for each class to get a Tree
• Directing each tree
• Estimating the covariance matrices from the tree

6.13 Mixtures of trees

• A single tree is rather limited in its expressive power.
• learning a mixture of trees (Meila and Jordan 2000), where each mixture component

may have a different tree topology is an alternative

6.13.1 Integrating out over all possible trees.

This can be done in 𝑉 3 time using the matrix tree theorem.

Matrix Tree Theorem: Chaiken and Kleitman (1978); Meila and Jaakkola (2006). For any
symmetric weight matrix 𝑊 with all entries in ℝ+, the sum over all spanning trees of the
product of the weights of their edges is equal to any minor of its Laplacian 𝑄. That is, for any
1 ≤ 𝑢, 𝑣 ≤ 𝑝,

𝑊 ≜ ∑𝑇 ∈𝒯 ∏𝑗𝑘∈𝑇 𝑤𝑗𝑘 = |𝑄𝑢𝑣|.
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Consequently, the operation of summing over all spanning trees can be carried out in a compu-
tationally efficient way. Meila and Jaakkola (2006) built on this result to provide a close form
expression for the derivative of the sum-product W with respect to each entry of the input
weight matrix W. Without loss of generality, we choose 𝑄11.

6.14 Learning DAG structures

Three DAGs. G1 and G3 are Markov equivalent,G2 is not.

6.14.1 Graphs are Markov equivalent

if they encode the same set of CI assumptions

6.15 Learning DAG structures

6.15.1 An ill posed problem

when we learn the DAG structure from data, we will not be able to uniquely identify all of the
edge directions

we can learn DAG structure “up to Markov equivalence”.

Do not read too much into the meaning of particular edge orientations, since we can often
change them without changing the model in any observable way.
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6.16 Exact structural inference

Exact structural inference is based on the computation of exact posterior over graphs,
𝑝(𝐺|𝐷).
It requires:

• the computation of the likelihood 𝑝(𝐷|𝐺)
• the computation of the prior 𝑝(𝐺)

This solution allows to compared different graph in terms of posterior and eventually find the
MAP if the search space is small

6.17 Exact structural inference (categorical case)

Consider 𝑥𝑖𝑡 ∈ {1, ⋯ , 𝐾𝑡} be the value of node t in case i, where

• 𝐾𝑡 is the number of states for node 𝑡.
• 𝜃𝑡𝑐𝑘 ≜ 𝑝(𝑥𝑡 = 𝑘|𝑥𝑝𝑎(𝑡) = 𝑐), for 𝑘 = 1 ∶ 𝐾𝑡, and 𝑐 = 1 ∶ 𝐶𝑡, where 𝐶𝑡 is the number of

parent combinations (possible conditioning cases).

Let 𝑑𝑡 = 𝑑𝑖𝑚(𝑝𝑎(𝑡)) be the degree or fan-in of node t, so that 𝐶𝑡 = 𝐾𝑑𝑡 .

6.18 Exact structural inference (categorical case)

6.18.1 Prior

𝑝(𝜃) =
𝑉

∏
𝑡=1

𝑝(𝜃𝑡) =
𝑉

∏
𝑡=1

𝐶𝑡

∏
𝑐=1

𝑝(𝜃𝑡𝑐)

where 𝐶𝑡 is the number of parent combinations (possible conditioning cases)

6.18.2 Likelihood

𝑝(𝐷|𝐺, 𝜃) =
𝑉

∏
𝑡=1

𝐶𝑡

∏
𝑐=1

𝐾𝑡

∏
𝑘=1

𝜃𝑁𝑡𝑐𝑘
𝑡𝑐𝑘

where 𝑁𝑡𝑐𝑘 is the number of time node t is in state k and its parent in state c.
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6.19 Exact structural inference (categorical case)

Chosing a Dirichlet prior 𝑝(𝜃𝑡𝑐) = 𝐷𝑖𝑟(𝜃𝑡𝑐|𝛼𝑡𝑐) allows to compute the posterior

𝑝(𝐷|𝐺) =
𝑉

∏
𝑡=1

𝐶𝑡

∏
𝑐=1

𝐵(𝑁𝑡𝑐 + 𝛼𝑡𝑐)
𝐵(𝛼𝑡𝑐)

where 𝑁𝑡𝑐 = ∑𝑘 𝑁𝑡𝑐𝑘, and 𝛼𝑡𝑐 = ∑𝑘 𝛼𝑡𝑐𝑘.

6.19.1 Local scoring

For node t and its parents

𝑠𝑐𝑜𝑟𝑒(𝑁𝑡,𝑝𝑎(𝑡)) ≜
𝐶𝑡

∏
𝑐=1

𝐵(𝑁𝑡𝑐 + 𝛼𝑡𝑐)
𝐵(𝛼𝑡𝑐)

Marginal likelihood factorizes according to the graph structure.

6.20 Setting the prior

How should we set the hyper-parameters 𝛼𝑡𝑐𝑘 ?

• Jeffreys prior of the form 𝛼𝑡𝑐𝑘 = 1/2 violates a property called likelihood equivalence
• This property says that if G1 and G2 are Markov equivalent , they should have the same

marginal likelihood

6.20.1 BDe prior

• Geiger and Heckerman (1997) proved that, for complete graphs, the only prior that
satisfies likelihood equivalence and parameter independence is the Dirichlet prior, where
the pseudo counts have the form

𝛼𝑡𝑐𝑘 = 𝛼𝑝0(𝑥𝑡 = 𝑘, 𝑥𝑝𝑎(𝑡) = 𝑐)

where 𝛼 > 0 is called the equivalent sample size, and 𝑝0 is some prior joint probability distri-
bution. This is called the BDe prior (Bayesian Dirichlet likelihood equivalent).

36



6.21 Example of Exact structural inference (Neapolitan 2003, p.438)

6.22 Scaling up to larger graphs

The main challenge in computing the posterior over DAGs is that there are so many possible
graphs.

Consequently, we must settle for finding a locally optimal MAP DAG.

6.22.1 Popular solution: Greedy hill climbing

• at each step, the algorithm proposes small changes to the current graph, such as adding,
deleting or reversing a single edge;

• it then moves to the neighboring graph which most increases the posterior.
• The method stops when it reaches a local maximum.

6.23 Learning causal DAGs

6.23.1 Causal models

• predict the effects of interventions to, or manipulations of, a system.
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• Causal claims are inherently stronger, yet more useful, than purely associative claims

6.23.2 Causal interpretation of DAGs

• 𝐴 → 𝐵 in a DAG to mean that “A directly causes B” so if we manipulate A, then B will
change.

• Known as the causal Markov assumption.

6.24 Intervention

6.24.1 Perfect intervention

• represents the act of setting a variable to some known value
• A real world example of such a perfect intervention is a gene knockout experiment

6.24.2 do calculus notation

𝑑𝑜(𝑋𝑖 = 𝑥𝑖) to denote the event that we set 𝑋𝑖 to 𝑥𝑖

• A causal model makes inferences of the form 𝑝(𝑥|𝑑𝑜(𝑋𝑖 = 𝑥𝑖)),
• Different from making inferences of the form 𝑝(𝑥|𝑋𝑖 = 𝑥𝑖).

6.25 Observing versus doing

Consider a 2 node DGM 𝑆 → 𝑌

• 𝑆 = 1 if you smoke
• 𝑆 = 0 otherwise,
• 𝑌 = 1 if you have yellow-stained fingers
• 𝑌 = 0 otherwise.

If I observe you have yellow fingers, I am licensed to infer that you are probably a smoker
(since nicotine causes yellow stains):

𝑝(𝑆 = 1|𝑌 = 1) > 𝑝(𝑆 = 1)

If I intervene and paint your fingers yellow, I am no longer licensed to infer this, since I have
disrupted the normal causal mechanism. Thus

𝑝(𝑆 = 1|𝑑𝑜(𝑌 = 1)) = 𝑝(𝑆 = 1)
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6.26 Graph surgery

One way to model perfect interventions is to use graph surgery: - represent the joint distribu-
tion by a DGM, - cut the arcs coming into any nodes that were set by intervention.

7 Markov Random Field or Undirected Graphical Models

8 Markov Random Fields

8.1 Problem of directed graph

• Several graphs can induce the same set of conditional independences .
• Is it possible to associate to each graph a family of distribution so that conditional

independence coincides exactly with the notion of separation in the graph?

8.2 Conditional independence properties of UGMs

UGMs define CI relationships via simple graph separation:

39



8.2.1 Global Markov property for UGMs

for sets of nodes A, B, and C, we say 𝑥𝐴 ⟂𝐺 𝑥𝐵|𝑥𝐶 iff C separates A from B in the graph G.

When we remove all the nodes in C, if there are no paths connecting any node in A to any
node in B, then the CI property holds.

8.3 Other Markov properties

8.3.1 Local Markov property

A variable is conditionally independent of all other variables given its neighbors:

𝑋𝑣 ⟂ 𝑋𝑉 ∖N[𝑣] ∣ 𝑋N(𝑣)

8.3.2 Pairwise Markov property

Any two non-adjacent variables are conditionally independent given all other variables:

𝑋𝑢 ⟂ 𝑋𝑣 ∣ 𝑋𝑉 ∖{𝑢,𝑣}

8.3.3 Links

It is obvious that global Markov implies local Markov which implies pairwise Markov.

8.4 Undirected Graph

8.4.1 A Markov Random Field

Given an undirected graph a Markov Random Field is associated with probability distributions
obeying the global Markov property:

𝑋𝐴 ⟂⟂ 𝑋𝐵|𝑋𝐶
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8.4.2 The distribution 𝑝(𝑥) of a Markov Random Field

is given by the Hammersley-Clifford Theorem (1971)

𝑝(𝑥) = 1
𝑍 ∏

𝑐∈cl(𝐺)
Ψ𝑐(𝑥𝑐|𝜃𝑐)

where cl(𝐺) is the set of all cliques of 𝐺, and

𝑍 ≜ ∑
𝑥

∏
𝑐∈cl(𝐺)

Ψ𝑐(𝑥𝑐|𝜃𝑐)

is the “partition function”.

8.5 Hammersley-Clifford Theorem

A distribution 𝑝 (with 𝑝(𝑥) > 0) for all 𝑥 satisfies the Global Markov property for graph 𝐺 iff
it is a Gibbs distribution associated with 𝐺

𝑝(𝑥) = 1
𝑍 ∏

𝑐∈cl(𝐺)
Ψ𝑐(𝑥𝑐|𝜃𝑐)

It is easy to check the global Markov property if the distribution is Gibbs but more difficult
to do the reverse.

8.6 Hammersley-Clifford Theorem

Goal: show that if we have the Global Markov Property then we have a Gibbs Distribution

The idea of the demonstration consists in considering a generic form subject to the global
global Markov property:

Consider 𝑄(𝑥) = ln 𝑝(𝑥)
𝑝(0) and its unique decomposition on the interaction space (of the 𝑛

variables)

𝑄(𝑥) = ∑
𝑖

𝑥𝑖𝐺𝑖(𝑥𝑖) + ∑
𝑖<𝑗

𝑥𝑖𝑥𝑗𝐺𝑖𝑗(𝑥𝑖, 𝑥𝑗) + ⋯ + 𝑥1𝑥2...𝑥𝑛𝐺12...𝑛(𝑥1, 𝑥2, ..., 𝑥𝑛)

To show that the expression 𝑝(𝑥) ∝ exp(𝑄(𝑥)) is a Gibbs distribution, we have only to prove
that 𝐺𝐴(𝑥𝐴) = 0 when A is not a complete subset of the graph.
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8.7 Hammersley-Clifford Theorem

For example 𝑥𝑖𝐺𝑖(𝑥𝑖) = 𝑄(0, ..., 0, 𝑥𝑖, 0, ..., 0) − 𝑄(0)
Consider for any vectors 𝑥 and 𝑥𝑖 = (𝑥1, ..., 𝑥𝑖−1, 0, 𝑥𝑖+1, ..., 𝑥𝑛)

exp (𝑄(𝑥) − 𝑄(𝑥𝑖)) = 𝑝(𝑥)
𝑝(𝑥𝑖) = 𝑝(𝑥𝑖, 𝑥𝑉 −𝑖)

𝑝(0, 𝑥𝑉 −𝑖)
=

𝑝(𝑥𝑖 ∣ 𝑥N[𝑖])
𝑝(0 ∣ 𝑥N[𝑖])

Notice that

𝑄(𝑥)−𝑄(𝑥1) = 𝑥1(𝐺1(𝑥1)+∑
𝑗≠1

𝑥𝑗𝐺1𝑗(𝑥1, 𝑥𝑗))+ ∑
𝑗≠1,𝑗<𝑘

𝐺1𝑗𝑘(𝑥1, 𝑥𝑗, 𝑥𝑘)+...+𝑥2...𝑥𝑛𝐺12...𝑛(𝑥1, 𝑥2, ..., 𝑥𝑛))

Suppose 𝑙 is not a neighbor of 1. All terms (and thus 𝐺 functions) involving 𝑙 must be null.
The 𝐺 functions are thus not null only if the variables form a clique on the graph.

8.8 Markov Blanket in an undirected graph

8.8.1 Definition

The Markov Blanket 𝑀𝐵(𝑖) of a node i is the smallest set of nodes 𝑀𝐵(𝑖) such that 𝑋𝑖 ⟂⟂
𝑋𝑅|𝑋𝑀𝐵(𝑖), 𝑤𝑖𝑡ℎ𝑅 = 𝑉 ∖ (𝑀𝐵(𝑖) ∪ 𝑖) or equivalently such that 𝑝(𝑋𝑖|𝑋∖𝑖) = 𝑝(𝑋𝑖|𝑋𝑀𝐵(𝑖)).
For a Markov Random field the Markov blanket of 𝑋𝑖 are its neighbors on G:

𝑋𝑀𝐵(𝑖) = 𝑋𝑁[𝑖]

8.9 Moralization

For a given oriented graphical model

• is there an unoriented graphical model which is equivalent?
• is there a smallest unoriented graphical which contains the oriented graphical model?

𝑝(𝑥) = 1
𝑍 ∏𝑐 𝜓(𝑥𝑐) vs 𝑝(𝑥) = ∏𝑖 𝑝(𝑥𝑖 ∣ 𝑥𝜋(𝑖))
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8.10 Moralization

Given a directed graph 𝐺, its moralized graph 𝐺𝑀 is obtained by 1. For any node i, add
undirected edges between all its parents 2. Remove the orientation of all the oriented edges

8.11 Moralization

8.11.1 Proposition

If a probability distribution factorizes according to a directed graph 𝐺 then it factorizes ac-
cording to the undirected graph 𝐺𝑀 .

A distribution that factorizes according to a directed model is a Gibbs distribution for the
cliques 𝐶𝑖 = {𝑖} ∪ 𝜋(𝑖). As a consequence, it factorizes according to an undirected graph in
which 𝐶𝑖 are cliques.

8.12 Ising model

• The Ising model is an example of an MRF that arose from statistical physics.

• It was originally used for modeling the behavior of magnets.

Let 𝑥𝑠 ∈ {−1, +1} represents the spin of an atom, which can either be spin down or up.

In some magnets, called ferro-magnets, neighboring spins tend to line up in the same direction,
whereas in other kinds of magnets, called anti-ferromagnets, the spins “want” to be different
from their neighbors.
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8.13 Ising model Gibbs distribution

Consider a graph with pairwise clique potential:

𝜓𝑠𝑡(𝑥𝑠, 𝑥𝑡) = 𝑒𝑤𝑠𝑡𝑥𝑠𝑥𝑡

where 𝑤𝑠𝑡 is the coupling strength between neighboring nodes s and t.

The log probability is then

𝑝(𝑥) = 1
𝑍 𝑒∑𝑠∼𝑡 𝑤𝑠𝑡𝑥𝑠𝑥𝑡 = 1

𝑍 𝑒 1
2 𝑥𝑇 𝑊𝑥

If 𝑤𝑠𝑡 = 𝛽 > 0, we get high probability if neighboring states agree.

8.14 Ising model Gibbs distribution with external field

Sometimes there is an external field, which is an energy term which is added to each spin.

This can be modelled using a local energy term of the form 𝑏𝑇 𝑥, where 𝑏 = (𝑏𝑠)𝑠 is sometimes
called a bias term.

The modified distribution is given by

𝑝(𝑥) = 1
𝑍 𝑒 1

2 𝑥𝑇 𝑊𝑥+𝑏𝑇 𝑥

8.15 Links with Gaussian

Distribution looks similar to a Gaussian but

8.15.1 Beware normalization constant

• in the case of Gaussians, the normalization constant, 𝑍 = |2𝜋Σ|, requires the computa-
tion of a matrix determinant, which can be computed in O(D3) time,

• whereas in the case of the Ising model, the normalization constant requires summing
over all 2𝐷 bit vectors;
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8.16 Exercice: Ising Model with 𝑤𝑠𝑡 = 𝛽 and 𝑏𝑠 = 𝛼

Compute the conditional distribution

𝑝(𝑥𝑖 = 1|𝑥∖𝑖)
and use it to design a Gibbs sampler.

8.17 Gibbs sampler for ising model

8.17.1 The conditional site probability

can be used to build a Gibbs sampler:

𝑝(𝑥𝑖 = 1|𝑥N[𝑖]) =
𝑒𝑥𝑝(𝛼 + 𝛽 ∑𝑗∼𝑖 𝑥𝑗)

𝑒𝑥𝑝(𝛼 + 𝛽 ∑𝑗∼𝑖 𝑥𝑗) + 𝑒𝑥𝑝(−𝛼 − 𝛽 ∑𝑗∼𝑖 𝑥𝑗)

8.17.2 Gibbs sampler

1. Init the random field 𝑥 = {𝑥𝑖}
2. loop through sites

a. Pick a site 𝑖 at random
b. Simulate from 𝑝(𝑥𝑖 = 1|𝑥N[𝑖])

8.18 R code for fetching neighbors of site 𝑥𝑖𝑗

get_neighbours<-function(ij,n,p){
# Get the 4 neighbours of a pixel i,j in a field of size nxp
# aj
# |
# il - ij - ir
# |
# uj
j<-(ij-1) %/% n+1 ; i<-ij-(j-1)*n
u<-ifelse(i+1>n,1,i+1)# V3: u j
a<-ifelse(i-1<1,n,i-1)# V1: a j
l<-ifelse(j-1<1,p,j-1)# V3: i l
r<-ifelse(j+1>p,1,j+1)# V4: i r
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neighbours.coord<-matrix(c(u,a,i,i,j,j,l,r),4,2)
neighbours.index<-neighbours.coord[,1]+

(neighbours.coord[,2]-1)*n
return(neighbours.index)

}

8.19 R Gibbs sample for Ising model

gibbs.ising<-function(n=50,p=50,prob=0.5,alpha=0,
beta=1/2,nb.cycle=20){

# Inititialisation
MRF<-2*matrix(rbinom(n*p,size=1,prob=prob),n,p)-1
np<-n*p
cycle<-1
while(cycle<=nb.cycle){
cycle<-cycle+1
walk.order<-sample(1:np,np,replace=FALSE)
sapply(walk.order,function(ij){

sum.Nij<-sum(MRF[get_neighbours(ij,n,p)])
pXij.cond.Nij<- exp(alpha+beta*sum.Nij) / (exp(alpha+beta*sum.Nij)+exp(-alpha-beta*sum.Nij))
MRF[ij]<<- 2*rbinom(1,1,prob=pXij.cond.Nij)-1}
)

}
return(MRF)

}

8.20 Ising illustration 𝛽 = 0

image(gibbs.ising(beta=0))
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8.21 Ising illustration 𝛽 = 0.5

image(gibbs.ising(beta=0.5))
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8.22 Ising illustration 𝛽 = 3

image(gibbs.ising(beta=3))
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8.23 Hopfield networks

A Hopfield network (Hopfield 1982) is a fully connected Ising model with a symmetric weight
matrix, 𝑊 = 𝑊 𝑇

8.24 Boltzmann machine

A fully connected graph with Bernoulli random variable 𝑋𝑖 at each node 𝑖 whith parameter
𝜃𝑖 given by a logistic regression on the other variables:

logit (𝜃𝑖) = 𝛼𝑖 + ∑
𝑖≠𝑗

𝑤𝑖𝑗𝑋𝑗

The weight are symetric and 𝑤𝑖𝑖 = 0.

The joint distribution is
𝑝(𝑥) = 1

𝑍 exp ∑
𝑖

𝛼𝑖𝑥𝑖 + ∑
𝑖<𝑗

𝑤𝑖𝑗𝑥𝑖𝑥𝑗

• Boltzmann machine are used to “learn” distributions for prediction or summary.

• Estimation of the parameters is not trivial because of the partition function.

8.25 Boltzmann machine estimation of the parameters when the graph is known

• Assuming observation 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑝) ∈ {0, 1}𝑝, with 𝑖 = 1, ..., 𝑁 . The log-
likelihood is

• to avoid handling the bias terms 𝛼𝑖 we assume a vetex 0 and condition w.r.t. 𝑥0 = 1
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𝐿(𝑊) = ∑
𝑖

log 𝑃𝑊 (𝑋𝑖 = 𝑥𝑖),

= ∑
𝑖

∑
(𝑗,𝑘)∈𝐸

𝑤𝑗𝑘𝑥𝑖𝑗𝑥𝑖𝑘 − log 𝑍(𝑊)

8.25.1 The gradient of the log-likelihood

𝜕𝐿(𝑊)
𝜕𝑤𝑗𝑘

= ∑
𝑖

𝑥𝑖𝑗𝑥𝑖𝑘 − 𝑁 𝜕 log 𝑍(𝑊)
𝜕𝑤𝑗𝑘

where 𝜕 log 𝑍(𝑊)
𝜕𝑤𝑗𝑘

= 1
𝑍(𝑊)

𝜕𝑍(𝑊)
𝜕𝑤𝑗𝑘

= ∑𝑥∈𝒳 𝑥𝑗𝑥𝑘𝑃𝑊 (𝑥) = 𝐸𝑊 [𝑋𝐽𝑋𝐾]

8.26 Boltzmann machine estimation of the parameters when the graph is known

Setting the gradient to zero gives

̂𝐸(𝑋𝑗𝑋𝑘) − 𝐸𝑊 (𝑋𝑗𝑋𝑘) = 0

where ̂𝐸(𝑋𝑗𝑋𝑘) = 1
𝑁 ∑𝑖 𝑥𝑖𝑗𝑥𝑖𝑘

To find the maximum likelihood estimates,

• we can use gradient search or Newton methods.
• However the computation of the expectation is usually not possible

8.27 Boltzmann machine estimation of the parameters when the graph is known

• The mean field approximation estimates 𝐸𝑊 (𝑋𝑗𝑋𝑘) by 𝐸𝑊 (𝑋𝑗)𝐸𝑊 (𝑋𝑘), and replaces
the input variables by their means, leading to a set of nonlinear equations for the param-
eters 𝑤𝑗𝑘.

• To obtain near-exact solutions, Gibbs sampling (Section is used to approximate
𝐸𝑊 (𝑋𝑗𝑋𝑘) by successively sampling from the estimated model probabilities
𝑃𝑊 (𝑋𝑗|𝑋−𝑗).

• …
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8.28 Boltzmann machine with Hidden Nodes

• We assume 2 types of variables (𝒱 visible and ℋ hidden)

The Log-likelihood for 𝐾 samples is

𝐿 = ∑
𝑖

log 𝑃(𝑋𝒱 = 𝑥𝒱𝑖
)

= ∑
𝑖

log ∑
𝑥ℋ

𝑃(𝑋𝒱 = 𝑥𝒱𝑖
, 𝑋ℋ = 𝑥ℋ)

𝐿 = ∑
𝑖

⎛⎜
⎝

log ∑
𝑥ℋ

exp ∑
(𝑗,𝑘)∈𝐸

𝑤𝑗𝑘𝑥𝑖𝑗𝑥𝑖𝑘 − log 𝑍⎞⎟
⎠

where the sum over 𝑥ℋ means that we are summing over all possible {0, 1} values for the
hidden units.

8.29 Boltzmann machine with Hidden Nodes

The gradient of the log-likelihood with respect to 𝑤𝑗𝑘 is:

𝜕𝐿(𝑊)
𝜕𝑤𝑗𝑘

=
𝑁

∑
𝑖=1

𝔼𝑃𝑊 (𝑋ℋ∣𝑋𝒱=𝑥(𝑖)
𝒱 )[𝑋𝑗𝑋𝑘]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Expected sufficient statistic under posterior

− 𝔼𝑃𝑊 (𝑋)[𝑋𝑗𝑋𝑘]⏟⏟⏟⏟⏟⏟⏟
Model expectation (from

log 𝑍(𝑊))

Noticing that the numerator is:

∑
𝑥ℋ

𝑥𝑗𝑥𝑘⋅
exp (∑(𝑎,𝑏)∈𝐸 𝑤𝑎𝑏𝑥𝑎𝑥𝑏)

𝑍(𝑊) = 𝔼𝑊 [𝑋𝑗𝑋𝑘 ⋅ 𝕀{𝑋𝒱 = 𝑥(𝑖)
𝒱 }] = 𝑃𝑊 (𝑋𝑗 = 1, 𝑋𝑘 = 1, 𝑋𝒱 = 𝑥(𝑖)

𝒱 )

and the denominator is:

∑
𝑥ℋ

exp (∑(𝑎,𝑏)∈𝐸 𝑤𝑎𝑏𝑥𝑎𝑥𝑏)
𝑍(𝑊) = 𝑃𝑊 (𝑋𝒱 = 𝑥(𝑖)

𝒱 )
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8.30 Boltzmann machine with Hidden Nodes

𝜕𝐿
𝜕𝑤𝑗𝑘

= ∑
𝑖

(∑
𝑖

𝑃(𝑋𝑗 = 𝑋𝑘 = 1 ∣ 𝑋𝒱 = 𝑥𝒱𝑖
) − 𝑃(𝑋𝑗 = 𝑋𝑘 = 1))

= ∑
𝑖

𝐸𝑊 (𝑋𝑗𝑋𝑘|𝑋𝒱𝑖
) − 𝐸𝑊 (𝑋𝑗𝑋𝑘)

8.31 Boltzmann machine parameter estimation with hidden nodes

8.31.1 Gibbs sampling

Each part of the sum can be estimated via simulation (e.g. Gibbs sampler):

• unconditionned network
• network with fixed 𝑥𝒱𝑘

(clamped nodes)

The gradient is used for small steps before re-estimation

8.32 Boltzmann machine parameter estimation with hidden nodes

8.32.1 Variational approach (mean field approximation)

• Noting 𝜃𝑘 = 𝑃(𝑋𝑘 = 1) the joint distribution 𝑃(𝑋𝑗 = 𝑋𝑘 = 1) is approximated by 𝜃𝑗𝜃𝑘
• Problem reduces in estimating 𝜃𝑘
• Replacing input variables by their means
• And solving the system of non linear equations

– logit (𝜃𝑘) = 𝛼𝑘 + ∑𝑗≠𝑘 𝑤𝑗𝑘𝜃𝑗𝜃𝑘 in 𝑤𝑗𝑘

8.33 Restricted Boltzmann machine

• one layer of visible units and one layer of hidden units with no connections within each
layer.

• same generic form as a single hidden layer neural network
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8.34 Restricted Boltzmann machine

Let denote 𝑣 = 𝑋𝒱𝑖
and ℎ the observed value of the hidden nodes conditionnaly to 𝑣.

We have conditional independance of one layer with respect to the other

and
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8.35 Restricted Boltzmann machine

8.35.1 Parallel Gibbs sampling

• the variables in each layer are independent of one another, given the variables in the
other layers.

• Hence they can be sampled together, using the conditional probabilities

8.36 Training RBM using Gibbs sampling

The gradient of the likelihood for ℓ obs. is
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Using one Gibbs sampler round going from 𝑣𝑗 and ℎ𝑘 to 𝑣′
𝑗 and ℎ′

𝑘:

• The first exectation could be roughly approximated by the product 𝑣𝑗ℎ𝑘
• The second expectation could be approximated with one round of Gibbs sampling by

the product 𝑣′
𝑗ℎ′

𝑘

8.37 Training RBM using Gibbs Sampling

1. Take a training sample 𝑣, compute the probabilities of the hidden units and sample a
hidden activation vector ℎ from this probability distribution.

2. Compute the outer product of 𝑣 and ℎ to approximate 𝔼𝑝(ℎ|𝑣)[𝑣𝑗ℎ𝑘]
3. From h, sample a reconstruction 𝑣′ of the visible units, then resample the hidden activa-

tions ℎ′ from this. (Gibbs sampling step)
4. Compute the outer product of 𝑣′ and ℎ′ to approximate the expectation 𝔼𝑝(ℎ,𝑣)[𝑣𝑗ℎ𝑘].
5. Update to the weight matrix and the bias

Δ𝑤𝑗𝑘 = 𝜖(𝑣𝑗ℎ𝑘 − 𝑣′
𝑗ℎ′

𝑘)

Δ𝛼𝑗 = 𝜖(𝑣𝑗 − 𝑣′
𝑗), Δ𝛼ℎ = 𝜖(ℎ𝑘 − ℎ′

𝑘),

8.38 Github example from TimoMatzen

8.38.1 The MNIST Data

# TimoMatzen
library(RBM)
# Load the MNIST data
data(MNIST)
image(matrix(MNIST$trainX[2, ], nrow = 28),

col = grey(seq(0, 1, length = 256)))
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8.39 RBM: Github example from TimoMatzen: Learning

train <- MNIST$trainX
nb.hidden.units<-10
modelRBM <- RBM(x = train, n.iter = 1000,

n.hidden = nb.hidden.units,
size.minibatch = 10)
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8.40 RBM: Reconstruction example from TimoMatzen Hidden units
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Hidden node 1

plot.weights<-modelRBM$trained.weights[-1,-1]
for (i in 1:nb.hidden.units) {

image(matrix(plot.weights[,i],
nrow = sqrt(ncol(train))),

col = grey.colors(255))
title(main = paste0("Hidden node ", i), font.main = 4)
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plot.counter <- 0
}
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Hidden node 1
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Hidden node 2
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Hidden node 3
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Hidden node 4
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Hidden node 5
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Hidden node 6
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Hidden node 7
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Hidden node 8
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Hidden node 9
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Hidden node 10

8.41 Reconstruction example from TimoMatzen

# Get the test data from MNIST
test <- MNIST$testX
# Reconstruct the image with modelRBM
ReconstructRBM(test = test[6, ], model = modelRBM)
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Reconstruction Model

8.42 Classification with Boltzmann Machine

Using 2 type of visible units:

• the pixel values

• the (binarized) labels.
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8.43 Classification example from TimoMatzen

8.43.1 Training

data(MNIST)
# First get the train labels of MNIST
TrainY <- MNIST$trainY
# This time we add the labels as the y argument
modelClassRBM <- RBM(x = train, y = TrainY,

n.iter = 3000, n.hidden = 200,
size.minibatch = 10)

8.44 Classification example from TimoMatzen

8.44.1 Testing

# First get the test labels of MNIST
TestY <- MNIST$testY
# Give our ClassRBM model as input
PredictRBM(test = test, labels = TestY, model = modelClassRBM)$Accuracy
#[1] 0.852

8.45 Reference about RBM

• Hinton, G. A Practical Guide to Training Restricted Boltzmann Machines (2010) :
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

8.46 Exponential family

8.46.1 Discrete Case

𝑝(𝑥; 𝜃) = exp (𝜃𝑡𝜙(𝑥) − 𝐴(𝜃))

where 𝐴(𝜃) = log(𝑍(𝜃)) = log (∑𝑥 exp (𝜃𝑡𝜙(𝑥)))
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8.46.2 Examples

Gaussian, Bernoulli, Binomial, Poisson, Exponential, Weibull, Laplace, gamma, beta, multi-
nomial, Wishart distributions

8.47 Derivatives of the log partition function

𝜕𝐴(𝜃)
𝜕𝜃 = 1

𝑍(𝜃) ∑
𝑥

𝜙(𝑥) exp (𝜃𝑡𝜙(𝑥)) = 𝐸[𝜙(𝑥)]

𝜕2𝐴(𝜃)
𝜕𝜃𝜕𝜃𝑡 = 𝜕

𝜕𝜃𝑡 ∑
𝑥

𝜙(𝑥) exp (𝜃𝑡𝜙(𝑥) − 𝐴(𝜃))

= ∑
𝑥

𝑝(𝑥; 𝜃)𝜙(𝑥)(𝜙(𝑥)𝑡 − 𝐸[𝜙(𝑥)]𝑡)

= 𝐸[𝜙(𝑥)𝜙(𝑥)𝑡] − 𝐸[𝜙(𝑥)]𝑡𝐸[𝜙(𝑥)]
= 𝑣𝑎𝑟[𝜙(𝑥)]

8.48 Gradient ascent for maximizing the log-likelihood

The Log-likelihood for 𝐾 samples is

𝐿 = ∑
𝑘

log 𝑝(𝑥𝑘; 𝜃)

8.48.1 Gradient ascent

𝜕𝐿
𝜕𝜃 = ∑

𝑘

𝜕
𝜕𝜃((𝜃𝑡𝜙(𝑥𝑘) − 𝐴(𝜃))

= ∑
𝑘

(𝜙(𝑥𝑘) − 𝐸[𝜙(𝑥)])

= 𝐾 ( ̂𝐸[𝜙(𝑥)] − 𝐸[𝜙(𝑥)])

𝜃𝑞+1 = 𝜃𝑞+1 + 𝜖𝜕𝐿
𝜕𝜃

At the maximum (local) ̂𝐸[𝜙(𝑥)] = 𝐸[𝜙(𝑥)]
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8.49 Undirected models are members of exponential family.

If we consider 𝑝(𝑥; 𝜃) ∝ ∏𝑐∈𝒞 Ψ(𝑥𝑐)
it can be rewritten as exponential family

𝑝(𝑥; 𝜃) = exp (𝜃𝑡𝜙(𝑥) − 𝐴(𝜃))

where

1. The potential functions Ψ𝐶(𝑋𝐶) can be chosen in an exponential form:

Ψ𝐶(𝑋𝐶) = exp (𝜃𝑇
𝐶𝜙𝐶(𝑋𝐶)) ,

which makes the joint density 𝑝(𝑋) naturally fall within the exponential family. 2. Sufficient
Statistics: The sufficient statistics 𝜙𝐶(𝑋𝐶) of the cliques directly capture the local dependen-
cies. 3. Log-partition: The normalization constant 𝑍 corresponds to the exponential of the
log-partition function 𝐴(𝜃) of the exponential family.

8.49.1 Example: Ising Model

The Ising model, used in statistical physics and machine learning, is a specific case of a Markov
field where:

𝑝(𝑋) = 1
𝑍 exp ⎛⎜

⎝
∑

(𝑖,𝑗)∈𝐸
𝜃𝑖𝑗𝑋𝑖𝑋𝑗 + ∑

𝑖∈𝑉
𝜃𝑖𝑋𝑖⎞⎟

⎠
.

The density clearly follows the structure of an exponential family.

9 Gaussian Graphical Model

9.1 Gaussian Graphical Model

9.1.1 Density

A random vector 𝑥 ∈ ℝ𝑝 is distributed according to the multivariate Gaussian distribution
𝒩(𝜇, Σ) where 𝜇 is the mean vector and Σ the covariance matrix is defined by

𝑓(𝑥) = 1
(2𝜋)𝑝/2|Σ|1/2 𝑒𝑥𝑝{−1

2(𝑥 − 𝜇)′Σ−1(𝑥 − 𝜇)}
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9.1.2 Precision matrix

The inverse covariance matrix, also known as the precision matrix or the concentration matrix,
𝐾 = Σ−1

9.2 Link to Exponential family

9.2.1 Canonical parameters and sufficient statistics

𝜃 = {−𝜇𝑡𝐾, 𝐾}

𝜙(𝑥) = {𝑥, 𝑥𝑥𝑡}

9.3 Link to Markov Random Field

9.3.1 Factorization

𝑓(𝑥) ∝ ∏
𝑗

Ψ(𝑥𝑗) ∏
𝑗<𝑘

Ψ(𝑥𝑗𝑘)

where Ψ(𝑥𝑗) = (𝑒𝑥𝑝(− ∑𝑘 𝜇𝑘𝐾𝑘𝑗)𝑥𝑗 and Ψ(𝑥𝑗𝑘) = 𝑒𝑥𝑝(𝑥𝑗𝐾𝑗𝑘𝑥𝑘)

9.3.2 Markov property

From the factorization it is straightforward that

𝐾𝑖𝑗 = 0 ⇔ 𝑋𝑖 ⟂⟂ 𝑋𝑗 ∣ 𝑋𝑉 ∖{𝑖,𝑗}

Graph 𝐺 = {𝑉 , 𝐸} where 𝐾𝑖𝑗 = 0 ⇔ ∀(𝑖, 𝑗) ∉ 𝐸 describes the sparsity pattern of the
concentration matrix.
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9.4 Gaussian distribution and Conditional independence

[ 𝑥𝐴
𝑥𝐵

] ∼ 𝒩𝑝 ([ 𝜇𝐴
𝜇𝐵

] ; [ Σ𝐴𝐴 Σ𝐴𝐵
Σ𝐵𝐴 Σ𝐵𝐵

])

We have the following property

(𝑥𝐴 ∣ 𝑥𝐵 = 𝑏) ∼ 𝒩𝑝 (𝜇𝐴 + Σ𝐴𝐵Σ−1
𝐵𝐵(𝑏 − 𝜇𝐵); Σ𝐴𝐴 − Σ𝐴𝐵Σ−1

𝐵𝐵Σ𝐵𝐴) .

The idea of the proof consists in computing the conditional density 𝑓(𝑥𝐴|𝑥𝐵 = 𝑏) =
𝑓𝐴,𝐵(𝑥𝐴, 𝑏)/𝑓𝐵(𝑏) knowning that both 𝑓𝐵 and 𝑓𝐴,𝐵 are multivariate gaussian.

9.5 Concentration matrix

The concentration matrix is 𝐾 ∶= Σ−1. Using the partition of the multivariate vector in 𝐴
and 𝐵, the Schur complement allows to compute

𝐾𝐴𝐴 = (Σ𝐴𝐴 − Σ𝐴𝐵Σ−1
𝐵𝐵Σ𝐵𝐴)−1

which is exactly the inverse of the conditional covariance of 𝐴|𝐵.

If 𝐴 = (𝑥1, 𝑥2)𝑡 and 𝐵 = (𝑥3, ..., 𝑥𝑝)𝑡 then

𝐾𝐴𝐴 = (𝑘11 𝑘12
𝑘12 𝑘22

) = Σ−1
𝐴|𝐵

9.6 Concentration matrix

Thus the conditional covariance of 𝐴|𝐵 expressed in terms of concentration becomes

Σ𝐴|𝐵 = 1
𝑑𝑒𝑡(𝐾𝐴𝐴) ( 𝑘22 −𝑘12

−𝑘12 𝑘11
)

and the correlation of 𝑥1𝑥2|𝑥3...𝑥𝑝 is

−𝑘12
√𝑘11𝑘22

.
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9.7 Covariance selection

The task of computing the MLE for a (non-decomposable) GGM is called covariance selection
(Dempster 1972).

log 𝐿(𝐾) = log 𝑑𝑒𝑡𝐾 − 𝑡𝑟(𝑆𝐾)
where 𝑆 = 1

𝑁 ∑𝑁
𝑖=1(𝑥𝑖 − 𝑥)(𝑥𝑖 − 𝑥̄)𝑇 is the empirical covariance matrix.

9.7.1 Exercice

Derive the equation of the log-likelihood

9.7.2 The gradient

∇ log 𝐿(𝐾) = 𝐾−1 − 𝑆

9.8 Estimation of 𝐾 when the graph structure is known

Interestingly, one can show that the MLE must satisfy the following property:

• Σ𝑠𝑡 = 𝑆𝑠𝑡 if 𝐺𝑠𝑡 = 1 or 𝑠 = 𝑡

• 𝐾𝑠𝑡 = 0 if 𝐺𝑠𝑡 = 0, by definition of a GGM, i.e., the precision of a pair that are not
connected must be 0.

9.8.1 Σ is a positive definite matrix completion of S

it retains as many of the entries in S as possible:

• corresponding to the edges in the graph
• subject to the required sparsity pattern on 𝐾, corresponding to the absent edges;
• the remaining entries in Σ are filled in so as to maximize the likelihood.

67



9.9 Estimation of 𝐾 when the graph structure is known (Example)

Let us consider the example from (Hastie et al. 2009, p652) representing the cyclic structure,
𝑋1 − −𝑋2 − −𝑋3 − −𝑋4 − −𝑋1 , and the following empirical covariance matrix:

9.10 Estimation of 𝐾 when the graph is structure is unknown

By analogy to lasso one can define the following ℓ1 penalized criterion:

𝐽(𝐾) = − log 𝑑𝑒𝑡𝐾 + 𝑡𝑟(𝑆𝐾) + 𝜆‖𝐾‖1

where ‖𝐾‖1 = ∑𝑠𝑡 |𝑘𝑠𝑡|
Several algorithms have been proposed for optimizing this objective (Yuan and Lin 2007;
Banerjee et al. 2008; Duchi et al. 2008), although arguably the simplest is the one in (Friedman
et al. 2008), which uses a coordinate descent algorithm similar to the shooting algorithm for
lasso.

9.11 Graphical Lasso

The subgradient equation is

𝐾−1 − 𝑆 − 𝜆𝑆𝑖𝑔𝑛(𝐾) = 0,
where 𝑆𝑖𝑔𝑛(𝐾𝑗𝑘) = 𝑠𝑖𝑔𝑛(𝐾𝑗𝑘) if 𝐾𝑗𝑘 ≠ 0, else 𝑆𝑖𝑔𝑛(𝐾𝑗𝑘) ∈ [−1, 1] if 𝐾𝑗𝑘 = 0.

The graphical Lasso use regression to solve for 𝐾 and its inverse 𝑊 = 𝐾−1 one row and column
at a time.
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9.12 Graphical Lasso

If we consider a partition of columns in two

1. 𝑝 − 1 first colums
2. last column 𝑝

we have by definition

(𝑊11 𝑤12
𝑤𝑡

12 𝑤22
) (𝐾11 𝐾12

𝐾𝑡
12 𝑘22

) = 𝐼

show that 𝑤12 can be regressed from 𝑊11

𝑤12 = −𝑊11
𝐾12
𝑘22

= 𝑊11𝛽

9.13 Graphical Lasso (from Hastie & Tibshirani)

1. Initialize 𝑊 = 𝑆 + 𝜆𝐼 . The diagonal of 𝑊 remains unchanged in what follows.
2. Loop through columns until convergence

a. Partition the matrix 𝑊 into part 1: all but the jth row and column, and part 2:
the jth row and column.

b. Solve the lasso type problem 𝑊11𝛽−𝑠12+𝜆𝑆𝑖𝑔𝑛(𝛽) = 0 using the cyclical coordinate-
descent algorithm.

c. Update 𝑤12 = 𝑊11𝛽
3. In the final cycle (for each j) solve for 𝐾12 = −𝛽𝐾22, with 1/𝐾22 = 𝑤22 − 𝑤𝑇

12𝛽

10 Appendix
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10.1 Gibbs Sampling

Multi-stage Gibbs sampler: One step of the algorithm has 𝑝 stages

1. Given (𝑋𝑛
1 , ⋯ , 𝑋𝑛

𝑝 ) we sample 𝑋𝑛+1
1 from 𝑃(.|𝑋𝑛

1 , ⋯ , 𝑋𝑛
𝑝 )

2. Then sample 𝑋𝑛+1
2 from 𝑃(.|𝑋𝑛+1

1 , 𝑋𝑛
3 , ⋯ , 𝑋𝑛

𝑝 )
𝑗. Continuing we sample 𝑋𝑛+1

𝑗 from 𝑃(.|𝑋𝑛+1
1 , ⋯ , 𝑋𝑛+1

𝑗−1 , 𝑋𝑛
𝑗+1, ⋯ , 𝑋𝑛

𝑝 )
𝑝. In the last step we sample 𝑋𝑛+1

𝑝 from 𝑃(.|𝑋𝑛+1
1 , ⋯ , 𝑋𝑛+1

𝑝−1 )

10.2 Transition Matrix

Let 𝐴𝑗 be the transition matrix corresponding to the 𝑗𝑡ℎ step of the multi-stage Gibbs sam-
pler

𝐴𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑝; 𝑥′
1, 𝑥′

2, ⋯ , 𝑥′
𝑝) = 𝑃(𝑥′

𝑗|𝑥1, 𝑥2, ⋯ , 𝑥𝑗−1, 𝑥𝑗+1, ⋯ , 𝑥𝑝) ∏
(𝑖≠𝑗)

𝛿(𝑥𝑖 − 𝑥′
𝑖)

The ∏(𝑖≠𝑗) 𝛿(𝑥𝑖 − 𝑥′
𝑖) ensure that only site 𝑗 can be different between the origin state

𝑥1, 𝑥2, ⋯ , 𝑥𝑝 and the arrival state 𝑥′
1, 𝑥′

2, ⋯ , 𝑥′
𝑝.

Basically the matrix is sparse. For each configuration where 𝑥𝑗 changes (two lines of 𝐴𝑗 for
ising model), there are two corresponding columns and thus 4 possible transitions. There
are 2𝑝 configuration, the transition matrix is 2𝑝 × 2𝑝 and for each of the 2𝑝−1 configurations
without 𝑗 there are 4 non zeros transitions thus 22𝑝 − 2𝑝+1 = 2𝑝+1(2𝑝−1 − 1) zeros entries in
the matrix.

For a randomized Gibbs sampler, fix some probability distribution 𝑞𝑖 on {1, 2, ⋯ , 𝑝}. Given
that we are in state (𝑋𝑛

1 , ⋯ , 𝑋𝑛
𝑝 ), we first pick 𝑖 ∈ {1, 2, ⋯ , 𝑝} according to this distribution.

Then we sample 𝑋𝑛+1
𝑖 from 𝑃(⋅|𝑋𝑛

1 , ⋯ , 𝑋𝑛
𝑖−1, 𝑋𝑛

𝑖+1, ⋯ , 𝑋𝑝𝑛). The transition matrix for this
algorithm is

𝐴 = ∑
𝑗

𝑞𝑗𝐴𝑗

10.3 Stationary distribution

Proposition: 𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑝) is the stationary distribution of the multi-stage Gibbs sampler
and of the randomized Gibbs sample for any choice of the distribution 𝑞𝑖.

We only need to show that for all j, 𝐴𝑇
𝑗 (𝑥′

1, 𝑥′
2, ⋯ , 𝑥′

𝑝, •)𝑃 = 𝑃(𝑥′)
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𝐴𝑇
𝑗 (𝑥′, •)𝑃 = ⋯ ∑

𝑥1,𝑥2,⋯,𝑥𝑝

𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑝)𝐴𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑝; 𝑥′
1, 𝑥′

2, ⋯ , 𝑥′
𝑝)

= ∑
𝑥1,𝑥2,⋯,𝑥𝑝

𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑝)𝑃 (𝑥′
𝑗|𝑥1, 𝑥2, ⋯ , 𝑥𝑗−1, 𝑥𝑗+1, ⋯ , 𝑥𝑝) ∏

(𝑖≠𝑗)
𝛿(𝑥𝑖 − 𝑥′

𝑖)

= 𝑃(𝑥′
𝑗|𝑥′

1, 𝑥′
2, ⋯ , 𝑥′

𝑗−1, 𝑥′
𝑗+1, ⋯ , 𝑥′

𝑝) ∑
𝑥𝑗

𝑃(𝑥′
1, 𝑥′

2, ⋯ , 𝑥′
𝑗−1, 𝑥𝑗, 𝑥′

𝑗+1, ⋯ , 𝑥′
𝑝)

= 𝑃(𝑥′
𝑗|𝑥′

1, 𝑥′
2, ⋯ , 𝑥′

𝑗−1, 𝑥′
𝑗+1, ⋯ , 𝑥′

𝑝)𝑃 (𝑥′
1, 𝑥′

2, ⋯ , 𝑥′
𝑗−1, 𝑥′

𝑗+1, ⋯ , 𝑥′
𝑝)

= 𝑃(𝑥′
1, 𝑥′

2, ⋯ , 𝑥′
𝑝)

11 Exercices

11.1 Exercices Unidirected Graphical Model

11.1.1 Conditional independence

Let consider three sets of discrete variables 𝑋, 𝑌 , 𝑍. Show that if there exist two function 𝐹
and 𝐺 such that

𝑃(𝑋, 𝑌 , 𝑍) = 𝐹(𝑋, 𝑍)𝐺(𝑌 , 𝑍)
then

𝑋 ⟂⟂ 𝑌 ∣ 𝑍

11.2 Exercices Unidirected Graphical Model

11.2.1 Conditional independence (Exo 17.1 Elements of Stat)

For the Markov graph follow, list all of the implied conditional independence relations and
find the maximal cliques.

71



646 17. Undirected Graphical Models

X1

X2
X3

X4

X5

X6

FIGURE 17.8.

Ex. 17.2 Consider random variables X1,X2,X3,X4. In each of the following
cases draw a graph that has the given independence relations:

(a) X1 ⊥ X3|X2 and X2 ⊥ X4|X3.

(b) X1 ⊥ X4|X2,X3 and X2 ⊥ X4|X1,X3.

(c) X1 ⊥ X4|X2,X3, X1 ⊥ X3|X2,X4 and X3 ⊥ X4|X1,X2.

Ex. 17.3 Let Σ be the covariance matrix of a set of p variables X. Consider
the partial covariance matrix Σa.b = Σaa − ΣabΣ

−1
bb Σba between the two

subsets of variables Xa = (X1,X2) consisting of the first two, and Xb

the rest. This is the covariance matrix between these two variables, after
linear adjustment for all the rest. In the Gaussian distribution, this is the
covariance matrix of the conditional distribution of Xa|Xb. The partial
correlation coefficient ρjk|rest between the pair Xa conditional on the rest

Xb, is simply computed from this partial covariance. Define Θ = Σ−1.

1. Show that Σa.b = Θ−1
aa .

2. Show that if any off-diagonal element of Θ is zero, then the partial
correlation coefficient between the corresponding variables is zero.

3. Show that if we treat Θ as if it were a covariance matrix, and compute
the corresponding “correlation” matrix

R = diag(Θ)−1/2 · Θ · diag(Θ)−1/2, (17.40)

then rjk = −ρjk|rest

Ex. 17.4 Denote by
f(X1|X2,X3, . . . ,Xp)

the conditional density of X1 given X2, . . . ,Xp. If

f(X1|X2,X3, . . . ,Xp) = f(X1|X3, . . . ,Xp),

show that X1 ⊥ X2|X3, . . . ,Xp.
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11.3 Exercices Unidirected Graphical Model

11.3.1 Independences to graph (Exo 17.2 Elements of Stat)

Consider random variables 𝑋1, 𝑋2, 𝑋3, 𝑋4. In each of the following cases draw a graph that
has the given independence relations:

a. 𝑋1 ⟂⟂ 𝑋3 ∣ 𝑋2, and 𝑋2 ⟂⟂ 𝑋4 ∣ 𝑋3.
b. 𝑋1 ⟂⟂ 𝑋4|𝑋2, 𝑋3 and 𝑋2 ⟂⟂ 𝑋4 ∣ 𝑋1, 𝑋3.
c. 𝑋1 ⟂⟂ 𝑋4 ∣ 𝑋2, 𝑋3, 𝑋1 ⟂⟂ 𝑋3|𝑋2, 𝑋4 and 𝑋3 ⟂⟂ 𝑋4 ∣ 𝑋1, 𝑋2.

12 Exercices on Directed Graphical Models

12.1 Exercice Gaussian Bayesian Network

12.1.1 Data

Let consider the following graph 𝑥1 → 𝑥2 → 𝑥3 where

• 𝔼[𝑥1] = 𝑏1, 𝔼[𝑥2] = 𝑏2, 𝔼[𝑥3] = 𝑏3
• 𝑥1 = 𝑏1 + 𝑧1
• 𝑥2 = 𝑏2 + (𝑥1 − 𝑏1) + 𝑧2
• 𝑥3 = 𝑏3 + 1/2(𝑥2 − 𝑏2) + 𝑧3
• 𝜎1 = 𝜎2 = 𝜎3 = 1,

12.1.2 Problem

• Write the Adajcency matrix with topological ordering
• Derive the mean vector and covariance matrix of the random vector
• Simulate Gaussian data
• Estimtate the parameters from your simulation
• What improvment could you suggest ?

12.2 Exercice Directed GGM

• 𝜇𝑇 = (0, 1, 2)
• 𝑑𝑖𝑎𝑔(𝑆) = (1, 1, 1)

• 𝑊 = ⎛⎜
⎝

0 0 0
1 0 0
0 1/2 0

⎞⎟
⎠
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12.3 Exercice Directed GGM

We can observe that the precision matrix has the some support as 𝑊

n=1000
mu=c(0,1,2)
sigma=c(1,1,1)
W=matrix(c(0,1,0,0,0,1/2,0,0,0),3,3)
U=solve(diag(rep(1,3))-W)
S=diag(sigma)
Sigma=U%*%S^2%*%t(U)
solve(Sigma)

[,1] [,2] [,3]
[1,] 2 -1.00 0.0
[2,] -1 1.25 -0.5
[3,] 0 -0.50 1.0

12.4 Exercice Directed GGM

12.4.1 First solution (direct)

library(mvtnorm)
Xprime=rmvnorm(n,mean=c(0,1,2),sigma=Sigma)

12.4.2 Second solution (constructive)

X=matrix(0,n,3)
Z=matrix(rnorm(n*3),n,3)
for (i in 1:n)

for (j in 1:3)
X[i,j]=mu[j]+sigma[j]*Z[i,j] + sum(W[j,]*(X[i,]-mu))

Click to go Back to Lecture
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12.5 Sprinkler Exercice

Let us define the structure of the network

library(bnlearn)
library(visNetwork)
variables<-c("Nuageux","Arrosage","Pluie","HerbeMouillee")
net<-empty.graph(variables)
adj = matrix(0L, ncol = 4, nrow = 4, dimnames=list(variables, variables))
adj["Nuageux","Arrosage"]<-1
adj["Nuageux","Pluie"]<-1
adj["Arrosage","HerbeMouillee"]<-1
adj["Pluie","HerbeMouillee"]<-1
amat(net)=adj

12.6 Sprinkler Exercice

#plot.network(net) # for a nice html plot
plot(net)

Nuageux

Arrosage

Pluie

HerbeMouillee

12.7 Sprinkler Exercice

Simulate a sample according the model
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12.8 Basic Simulation with using conditional probability tables

Function for one event (one line of dataframe)

NAPHM1<-function(n){
N<-rbinom(1,size = 1,prob = 1/2)
if (N==1) {A<-rbinom(1,size = 1,prob = 0.1)} else {A<-rbinom(1,size =1,prob = 0.5)}
if (N==1) {P<-rbinom(1,size = 1,prob = 0.8)} else {P<-rbinom(1,size = ,1,prob = 0.2)}

if (A+P==0) HM<-rbinom(1,size = 1,prob = 0.1) else if
(A+P==1) HM<-rbinom(1,size = 1,prob = 0.9) else
HM<-rbinom(1,size = 1,prob = 0.99)
X<-as.logical(c(N,A,P,HM))
}

12.9 Basic Simulation with using conditional probability tables

n<-1000
X<-data.frame(t(sapply(1:n,NAPHM1)))
names(X)<-c("Nuageux","Arrosage","Pluie","HerbeMouillee")
head(X)

Nuageux Arrosage Pluie HerbeMouillee
1 FALSE FALSE FALSE FALSE
2 FALSE TRUE TRUE TRUE
3 TRUE FALSE FALSE FALSE
4 TRUE FALSE FALSE FALSE
5 FALSE FALSE FALSE FALSE
6 FALSE FALSE TRUE TRUE

12.10 Learning the parameters

mean(X$Nuageux) -> pNuageux
lapply(sousTableauxNuageux<-split(X,X$Nuageux),

function(XsousTableau){mean(XsousTableau$Arrosage)})
lapply(sousTableauxNuageux<-split(X,X$Nuageux),

function(XsousTableau){mean(XsousTableau$Pluie)})
lapply(sousTableauxNuageux<-split(X,X$Arrosage + X$Pluie),

function(XsousTableau){mean(XsousTableau$HerbeMouillee)})
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12.11 Learning the structure

library(pcalg)
alpha <- 0.1 # Significance level for independence tests
pc_result <- pc(
suffStat = list(dm = as.matrix(X), nlev = rep(2, ncol(X)), adaptDF = FALSE),
indepTest = binCItest, # Test for binary data
alpha = alpha, # Significance level
labels = colnames(X), # Variable names
verbose = TRUE # Print progress

)

# Display the inferred DAG
cat("\nInferred skeleton (undirected structure):\n")
print(pc_result@graph)

cat("\nInferred DAG (with orientations):\n")
print(pc_result@graph)

# Plot the resulting DAG
library(Rgraphviz)
plot(pc_result, main = "Inferred DAG using PC Algorithm and binCItest")

Back to lecture

12.12 Exercices directed Graphical Model

12.12.1 Joint distribution and graphical decomposition (Bishop 8.3)

The joint distribution over three binary variables
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Exercises 419

Table 8.2 The joint distribution over three binary variables. a b c p(a, b, c)
0 0 0 0.192
0 0 1 0.144
0 1 0 0.048
0 1 1 0.216
1 0 0 0.192
1 0 1 0.064
1 1 0 0.048
1 1 1 0.096

8.3 (⋆ ⋆) Consider three binary variables a, b, c ∈ {0, 1} having the joint distribution
given in Table 8.2. Show by direct evaluation that this distribution has the property
that a and b are marginally dependent, so that p(a, b) ̸= p(a)p(b), but that they
become independent when conditioned on c, so that p(a, b|c) = p(a|c)p(b|c) for
both c = 0 and c = 1.

8.4 (⋆ ⋆) Evaluate the distributions p(a), p(b|c), and p(c|a) corresponding to the joint
distribution given in Table 8.2. Hence show by direct evaluation that p(a, b, c) =
p(a)p(c|a)p(b|c). Draw the corresponding directed graph.

8.5 (⋆) www Draw a directed probabilistic graphical model corresponding to the
relevance vector machine described by (7.79) and (7.80).

8.6 (⋆) For the model shown in Figure 8.13, we have seen that the number of parameters
required to specify the conditional distribution p(y|x1, . . . , xM ), where xi ∈ {0, 1},
could be reduced from 2M to M +1 by making use of the logistic sigmoid represen-
tation (8.10). An alternative representation (Pearl, 1988) is given by

p(y = 1|x1, . . . , xM ) = 1 − (1 − µ0)
M∏

i=1

(1 − µi)xi (8.104)

where the parameters µi represent the probabilities p(xi = 1), and µ0 is an additional
parameters satisfying 0 ! µ0 ! 1. The conditional distribution (8.104) is known as
the noisy-OR. Show that this can be interpreted as a ‘soft’ (probabilistic) form of the
logical OR function (i.e., the function that gives y = 1 whenever at least one of the
xi = 1). Discuss the interpretation of µ0.

8.7 (⋆ ⋆) Using the recursion relations (8.15) and (8.16), show that the mean and covari-
ance of the joint distribution for the graph shown in Figure 8.14 are given by (8.17)
and (8.18), respectively.

8.8 (⋆) www Show that a ⊥ ⊥ b, c | d implies a ⊥ ⊥ b | d.

8.9 (⋆) www Using the d-separation criterion, show that the conditional distribution
for a node x in a directed graph, conditioned on all of the nodes in the Markov
blanket, is independent of the remaining variables in the graph.
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12.13 Exercices directed Graphical Model

12.13.1 Bishop 8.3

Consider three binary variables 𝑎, 𝑏, 𝑐 ∈ {0, 1} having the joint distribution given in Table
above. Show by direct evaluation that this distribution has the property that a and b are
marginally dependent, so that 𝑝(𝑎, 𝑏) ≠= 𝑝(𝑎)𝑝(𝑏), but that they become independent when
conditioned on c, so that 𝑝(𝑎, 𝑏 ∣ 𝑐) = 𝑝(𝑎 ∣ 𝑐)𝑝(𝑏 ∣ 𝑐) for both 𝑐 = 0 and 𝑐 = 1.

12.14 Exercices directed Graphical Model

12.14.1 Bishop 8.4

Show by direct evaluation that 𝑝(𝑎, 𝑏, 𝑐) = 𝑝(𝑎)𝑝(𝑐 ∣ 𝑎)𝑝(𝑏 ∣ 𝑐). Draw the corresponding
directed graph.

12.15 Local Markov Property

12.15.1 directed local Markov property

𝑡 ⟂ 𝑛𝑑(𝑡)\𝑝𝑎(𝑡)|𝑝𝑎(𝑡) where the non-descendants of a node 𝑛𝑑(𝑡) are all the nodes except for
its descendants

We the topological ordering we have

𝑝(𝑥𝑡|𝑥1, ⋯ , 𝑥𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑛𝑑(𝑡)) = 𝑝(𝑥𝑡|𝑥𝑝𝑎(𝑡))

Thus

𝑝(𝑥𝑡, 𝑥𝑛𝑑(𝑡)\𝑝𝑎(𝑡)|𝑥𝑝𝑎(𝑡)) = 𝑝(𝑥𝑛𝑑(𝑡)\𝑝𝑎(𝑡)|𝑥𝑝𝑎(𝑡))𝑝(𝑥𝑡|𝑥𝑝𝑎(𝑡), 𝑥𝑛𝑑(𝑡)\𝑝𝑎(𝑡))
= 𝑝(𝑥𝑛𝑑(𝑡)|𝑥𝑝𝑎(𝑡))𝑝(𝑥𝑡|𝑥𝑝𝑎(𝑡))
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12.16 Gaussian mutual information

𝐼(𝑠, 𝑡) =𝔼[log 𝑝(𝑥𝑠, 𝑥𝑡)
𝑝(𝑥𝑠)𝑝(𝑥𝑡)

] (1)

= − 1
2 log |Σ|

|𝑑𝑖𝑎𝑔(𝜎2
1, 𝜎2

2)| − 1
2𝔼[𝑧𝑡Σ−1𝑧 − 𝑧𝑡 [1/𝜎2

1 0
0 1/𝜎2

2
] 𝑧] (2)

= − 1
2 log(1 − 𝜌2) − 1/2𝑡𝑟𝑎𝑐𝑒(𝐸[𝑧𝑧𝑡(Σ−1 − [1/𝜎2

1 0
0 1/𝜎2

2
])]) (3)

= − 1
2 log(1 − 𝜌2) − 𝑡𝑟𝑎𝑐𝑒(𝐼 − [ 1 𝜎12/𝜎2

2
𝜎12/𝜎2

1 1 ]) (4)

= − 1
2 log(1 − 𝜌2) (5)

where 𝑧 = [𝑥𝑠
𝑥𝑡

] − [𝜇𝑠
𝜇𝑡

] and 𝐸[𝑧𝑧𝑡] = Σ

12.17 KL-divergence

Maximizing log-likelihood is equivalent to minimizing KL-divergence

13 Projects

13.1 List 2023

Explain a concept and illustrate with an example:

• 10 minutes OBS recording
• Commented Code Notebook (not a full report).

1. Simulation of images using a Strauss model (Markov Random Field). You may use the
paper “Markov Random Field Texture Models” Code for simulation Bonus : estimation
of the parameters

2. Programmation of Graphical Lasso. You may use the paper “Sparse inverse covariance
estimation with the graphical lasso” Original code of the algorithm illustrated with sachs
data

3. Program you own Restricted Boltzmann Machine for prediction. You may use the paper
“A Practical Guide to Training Restricted Boltzmann Machines” Original code of the
algorithm with illustration on MNIST dataset
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https://sites.google.com/view/e-lectures/recording-video-lecture/screen-recording/computer/obs


4. Structural equation models (SEM) using the NoTears approach. You may use the paper
“DAGs with NO TEARS: Continuous Optimization for Structure Learning” Use the
code from https://github.com/xunzheng/notears and illustrate with one example of your
choice

5. Belief Propagation for tree. You may use chapter 20 of Murphy’s book “Machine
Learning-A Probabilistic Perspective” Explain exercice Exercice 20.3

6. DAG inference using Deep Learning. Use the paper “DAG-GNN: DAG Structure Learn-
ing with Graph Neural Networks” Use the code from https://github.com/fishmoon1234/DAG-
GNN to provide an example Sachs proteins (https://perso.univ-rennes1.fr/valerie.monbet/GM/Sachs.html)
and Tuebingen cause-effect pairs are two common benchmark datasets.
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